IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v6y2024i2p36-731d1410930.html
   My bibliography  Save this article

Status of Solar-Energy Adoption in GCC, Yemen, Iraq, and Jordan: Challenges and Carbon-Footprint Analysis

Author

Listed:
  • Ashraf Farahat

    (Department of Physics, College of Engineering and Physics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
    Centre of Research Excellence in Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Centre of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Abdulhaleem H. Labban

    (Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdul-Wahab S. Mashat

    (Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Hosny M. Hasanean

    (Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Harry D. Kambezidis

    (Atmospheric Research Team, Institute of Environmental Research and Sustainable Development, National Observatory of Athens, GR-11810 Athens, Greece
    Laboratory of Soft Energies and Environmental Protection, Department of Mechanical Engineering, University of West Attica, P. Ralli & Thivon 250, GR-12244 Egaleo, Greece)

Abstract

This work examines the potential of some of the Gulf Cooperation Council countries (GCC) (Saudi Arabia (KSA), the United Arab Emirates (UAE), Qatar (QA), Bahrain (BH), Oman (OM)), Yemen (YE), Iraq (IQ), and Jordan (JO) to use their abundant solar radiation to generate electricity through PV technology. The study is structured to help decision-makers access the necessary data related to the status of solar-energy infrastructure and power production in the study region. The study investigates current efforts to establish PV technology and the challenges hindering the development of this technology. These efforts and challenges are then benchmarked against their status in Australia, which has climate and landscape conditions similar to those of the countries in the study region. It was found that Australia is successfully adopting solar energy in households and industrial locations despite its historical reliance on fossil fuels for energy production. This offers a potential avenue for replicating the Australian model of PV development in the study region. This work also addresses the effect of natural and anthropogenic aerosols on the performance of the PV panels. Meanwhile, it also proposes a conceptual model to help local governments and decision-makers in adopting solar-energy projects in the study region. Additionally, a preliminary carbon-footprint analysis of avoided emissions from PV energy utilization compared to national grid intensity was performed for each country. Findings show that the countries in the study region have great potential for using solar energy to gradually replace fossil fuels and protect the environment. It is observed that more hours of daylight and clear-to-scattered cloud coverage help increase solar irradiance near the ground all year around. Dust and aerosol loadings, however, were found to greatly reduce solar irradiance over the GCC area, especially during large dust events. Despite the high potential for harvesting solar energy in the study region, only a handful of PV plants and infrastructural facilities have been established, mostly in the KSA, the UAE, and Jordan. It was found that there is a critical need to put in place regulations, policies, and near-future vision to support solar energy generation and reduce reliance on fossil fuels for electricity production.

Suggested Citation

  • Ashraf Farahat & Abdulhaleem H. Labban & Abdul-Wahab S. Mashat & Hosny M. Hasanean & Harry D. Kambezidis, 2024. "Status of Solar-Energy Adoption in GCC, Yemen, Iraq, and Jordan: Challenges and Carbon-Footprint Analysis," Clean Technol., MDPI, vol. 6(2), pages 1-32, June.
  • Handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:36-731:d:1410930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/6/2/36/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/6/2/36/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aditya Pandey & Pramod Pandey & Jaya Shankar Tumuluru, 2022. "Solar Energy Production in India and Commonly Used Technologies—An Overview," Energies, MDPI, vol. 15(2), pages 1-26, January.
    2. Shaima A. Alnaqbi & Shamma Alasad & Haya Aljaghoub & Abdul Hai Alami & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2022. "Applicability of Hydropower Generation and Pumped Hydro Energy Storage in the Middle East and North Africa," Energies, MDPI, vol. 15(7), pages 1-27, March.
    3. Abdelrahman Azzuni & Arman Aghahosseini & Manish Ram & Dmitrii Bogdanov & Upeksha Caldera & Christian Breyer, 2020. "Energy Security Analysis for a 100% Renewable Energy Transition in Jordan by 2050," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    4. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    5. Rehman, Shafiqur, 1998. "Solar radiation over Saudi Arabia and comparisons with empirical models," Energy, Elsevier, vol. 23(12), pages 1077-1082.
    6. Al-Hinai, H. A. & Al-Alawi, S. M., 1995. "Typical solar radiation data for Oman," Applied Energy, Elsevier, vol. 52(2-3), pages 153-163.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    2. Bachour, D. & Perez-Astudillo, D., 2014. "Ground measurements of Global Horizontal Irradiation in Doha, Qatar," Renewable Energy, Elsevier, vol. 71(C), pages 32-36.
    3. Bashar Hammad & Sameer Al-Dahidi & Yousef Aldahouk & Daniel Majrouh & Suhib Al-Remawi, 2024. "Technical, Economic, and Environmental Investigation of Pumped Hydroelectric Energy Storage Integrated with Photovoltaic Systems in Jordan," Sustainability, MDPI, vol. 16(4), pages 1-26, February.
    4. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    5. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    6. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    7. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    8. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    10. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    11. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
    12. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    13. Ting Wang & Qiya Wang & Caiqing Zhang, 2021. "Research on the Optimal Operation of a Novel Renewable Multi-Energy Complementary System in Rural Areas," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    14. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    15. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    16. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    17. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
    18. Lee, Kwanho & Yoo, Hochun & Levermore, Geoff J., 2013. "Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea," Renewable Energy, Elsevier, vol. 57(C), pages 190-199.
    19. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
    20. Yahya Z. Alharthi, 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:6:y:2024:i:2:p:36-731:d:1410930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.