IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13998-d955166.html
   My bibliography  Save this article

Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning

Author

Listed:
  • Mukesh Kumar

    (School of Computer Application, Lovely Professional University, Phagwara 144402, India)

  • Saurabh Singhal

    (Department of Computer Engineering and Applications, GLA University, Mathura 281406, India)

  • Shashi Shekhar

    (Department of Computer Engineering and Applications, GLA University, Mathura 281406, India)

  • Bhisham Sharma

    (Department of Computer Science & Engineering, Chitkara University School of Engineering and Technology, Chitkara University, Baddi 174103, India)

  • Gautam Srivastava

    (Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
    Research Centre for Interneural Computing, China Medical University, Taichung 40402, Taiwan
    Department of Computer Science and Math, Lebanese American University, Beirut 1102, Lebanon)

Abstract

Breast cancer is the most frequently encountered medical hazard for women in their forties, affecting one in every eight women. It is the greatest cause of death worldwide, and early detection and diagnosis of the disease are extremely challenging. Breast cancer currently exceeds all other female cancers, including ovarian cancer. Researchers can use access to healthcare records to find previously unknown healthcare trends. According to the National Cancer Institute (NCI), breast cancer mortality rates can be lowered if the disease is detected early. The novelty of our work is to develop an optimized stacking ensemble learning (OSEL) model capable of early breast cancer prediction. A dataset from the University of California, Irvine repository was used, and comparisons to modern classifier models were undertaken. The implementation analyses reveal the unique approach’s efficacy and superiority when compared to existing contemporary categorization models (AdaBoostM1, gradient boosting, stochastic gradient boosting, CatBoost, and XGBoost). In every classification task, predictive models may be used to predict the class level, and the current research explores a range of predictive models. It is better to integrate multiple classification algorithms to generate a set of prediction models capable of predicting each class level with 91–99% accuracy. On the breast cancer Wisconsin dataset, the suggested OSEL model attained a maximum accuracy of 99.45%, much higher than any single classifier. Thus, the study helps healthcare professionals find breast cancer and prevent it from happening.

Suggested Citation

  • Mukesh Kumar & Saurabh Singhal & Shashi Shekhar & Bhisham Sharma & Gautam Srivastava, 2022. "Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13998-:d:955166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melwin D. Souza & G. Ananth Prabhu & Varuna Kumara & K. M. Chaithra, 2024. "EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 4018-4031, August.
    2. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    4. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    5. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    6. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    7. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    8. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    9. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    10. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    11. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    12. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    13. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    14. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    15. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    16. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    17. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    18. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.
    19. Dursun Delen & Hamed M. Zolbanin & Durand Crosby & David Wright, 2021. "To imprison or not to imprison: an analytics model for drug courts," Annals of Operations Research, Springer, vol. 303(1), pages 101-124, August.
    20. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13998-:d:955166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.