IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02408-6.html
   My bibliography  Save this article

EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection

Author

Listed:
  • Melwin D. Souza

    (Sahyadri College of Engineering & Management)

  • G. Ananth Prabhu

    (Sahyadri College of Engineering & Management)

  • Varuna Kumara

    (Moodlakatte Institute of Technology)

  • K. M. Chaithra

    (SJB Institute of Technology)

Abstract

Early-stage breast cancer detection remains a critical challenge in healthcare, demanding innovative approaches that leverage the power of deep learning and transfer learning techniques. The problem to be investigated involves designing a model capable of extracting meaningful features from mammographic images, maximizing transferability across datasets, and optimizing the trade-off between model complexity and computational efficiency. Existing methods often face limitations in achieving high accuracy, robustness, and efficiency. This research aims to address these challenges by proposing a novel transfer learning approach that combines the strengths of VGG11 and EfficientNet architectures for early-stage breast cancer detection. In the case of technological development, there is never a shortage of opportunities in the field of medical imaging. Cancer patients who have an earlier diagnosis of their disease have a lower probability of passing away from their illness. This research proposed an novel early neural network based on transfer learning names as ‘EARLYNET’ to automate breast cancer prediction. In this research, the new hybrid deep learning model was devised and built for distinguishing benign breast tumors from malignant ones. The trials were carried out on the Breast Histopathology Image dataset, and the model was evaluated using a Mobile net founded on the transfer learning method. In terms of accuracy, this model delivers 91.53% accuracy. Explored how the proposed transfer learning framework can enhance the accuracy and reliability of early-stage breast cancer detection, contributing to advancements in medical image analysis and positively impacting patient outcomes.

Suggested Citation

  • Melwin D. Souza & G. Ananth Prabhu & Varuna Kumara & K. M. Chaithra, 2024. "EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 4018-4031, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02408-6
    DOI: 10.1007/s13198-024-02408-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02408-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02408-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukesh Kumar & Saurabh Singhal & Shashi Shekhar & Bhisham Sharma & Gautam Srivastava, 2022. "Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Wang & Chen Peng & Bolin Liao & Xinwei Cao & Shuai Li, 2023. "Wind Power Forecasting Based on WaveNet and Multitask Learning," Sustainability, MDPI, vol. 15(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02408-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.