IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p13915-d953882.html
   My bibliography  Save this article

Realizing Smart Safety Management in the Era of Safety 4.0: A New Method towards Sustainable Safety

Author

Listed:
  • Xi Huang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China
    Safety & Security Theory Innovation and Promotion Center, Central South University, Changsha 410083, China)

  • Bing Wang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China
    Safety & Security Theory Innovation and Promotion Center, Central South University, Changsha 410083, China)

  • Chao Wu

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China
    Safety & Security Theory Innovation and Promotion Center, Central South University, Changsha 410083, China)

Abstract

Safety 4.0 is a new stage of safety science coincident with the development of Industry 4.0. In Safety 4.0, safety researchers and professionals attach importance to the perspective of safety information and emerging technologies in safety management, and thus promote a new concept: smart safety management (SSM). However, there are still many gaps in its fundamental theory, and there are few fundamental studies on the concept and essence of SSM. In order to fill these gaps, this paper introduces a theoretical study on the method of SSM. Firstly, in order to clarify the concept of smartness in the era of information, we elaborate the smartness performance of artificial entities and the essence of smart safety capability on the basis of analyzing the smartness performance of smart safety entities (SSEs). Then, we review the new characteristics and requirements of organizational safety management research and practice in the era of Safety 4.0; on this basis, we propose the definition and connotation of SSM in the era of Safety 4.0, and elaborate the specific content of the SSM method. Specifically, we divide SSM into four modules, safety information processing, safety action, inspiring awareness of safety and internal optimization, and thus build the content model of SSM. By expounding the contents and steps of the four modules, we further elaborate how to conduct SSM in industrial organizations. Then, we propose a SSM ecosystem for realizing sustainable safety in industrial organizations and analyze the approaches to realizing SSM in coal mine safety production. Finally, we analyze the significance of SSM in supporting sustainable safety and discuss the practical challenges that SSM may encounter in the future. The results show that SSM is a method based on safety intelligence, and it can support sustainable safety through the four aspects of comprehensive function, safety predictability, safety awareness and continuous optimalization.

Suggested Citation

  • Xi Huang & Bing Wang & Chao Wu, 2022. "Realizing Smart Safety Management in the Era of Safety 4.0: A New Method towards Sustainable Safety," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13915-:d:953882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/13915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/13915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Osterrieder, Philipp & Budde, Lukas & Friedli, Thomas, 2020. "The smart factory as a key construct of industry 4.0: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 221(C).
    2. Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
    3. Steven Alter, 2020. "Making Sense of Smartness in the Context of Smart Devices and Smart Systems," Information Systems Frontiers, Springer, vol. 22(2), pages 381-393, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka A. Tubis & Katarzyna Grzybowska, 2022. "In Search of Industry 4.0 and Logistics 4.0 in Small-Medium Enterprises—A State of the Art Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    2. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Estefania Tobon-Valencia & Samir Lamouri & Robert Pellerin & Alexandre Moeuf, 2022. "Modeling of the Master Production Schedule for the Digital Transition of Manufacturing SMEs in the Context of Industry 4.0," Sustainability, MDPI, vol. 14(19), pages 1-28, October.
    4. Eleonora Di Maria & Valentina De Marchi & Ambra Galeazzo, 2022. "Industry 4.0 technologies and circular economy: The mediating role of supply chain integration," Business Strategy and the Environment, Wiley Blackwell, vol. 31(2), pages 619-632, February.
    5. Ievgen Babeshko & Oleg Illiashenko & Vyacheslav Kharchenko & Kostiantyn Leontiev, 2022. "Towards Trustworthy Safety Assessment by Providing Expert and Tool-Based XMECA Techniques," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    6. Benjamin Cabanes & Stéphane Hubac & Pascal Le Masson & Benoit Weil, 2021. "Improving reliability engineering in product development based on design theory: the case of FMEA in the semiconductor industry," Post-Print hal-03143866, HAL.
    7. Zhi-Jiao Du & Zhi-Xiang Chen & Su-Min Yu, 2021. "Improved Failure Mode and Effect Analysis: Implementing Risk Assessment and Conflict Risk Mitigation with Probabilistic Linguistic Information," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    8. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    9. Bertha Leticia Treviño-Elizondo & Heriberto García-Reyes, 2023. "An Employee Competency Development Maturity Model for Industry 4.0 Adoption," Sustainability, MDPI, vol. 15(14), pages 1-29, July.
    10. Lemstra, Mary Anny Moraes Silva & de Mesquita, Marco Aurélio, 2023. "Industry 4.0: a tertiary literature review," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    11. Stefan Stieglitz & Milad Mirbabaie & Nicholas R. J. Möllmann & Jannik Rzyski, 2022. "Collaborating with Virtual Assistants in Organizations: Analyzing Social Loafing Tendencies and Responsibility Attribution," Information Systems Frontiers, Springer, vol. 24(3), pages 745-770, June.
    12. Hsing-Chun Hung & Yuh-Wen Chen, 2023. "Striving to Achieve United Nations Sustainable Development Goals of Taiwanese SMEs by Adopting Industry 4.0," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    13. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching, 2019. "A novel failure mode and effect analysis model for machine tool risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 173-183.
    14. Zuzhen Ji & Dirk Pons & John Pearse, 2021. "A Methodology for Harmonizing Safety and Health Scales in Occupational Risk Assessment," IJERPH, MDPI, vol. 18(9), pages 1-15, May.
    15. Irina Albãstroiu & Calcedonia Enache & Andrei Cepoi & Adrian Istrate & Teodora Liliana Andrei, 2021. "Adopting IoT-Based Solutions for Smart Homes. The Perspective of the Romanian Users," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(57), pages 325-325.
    16. Asim Abdullah & Muhammad Haris & Omar Abdul Aziz & Rozeha A. Rashid & Ahmad Shahidan Abdullah, 2023. "UTMInDualSymFi: A Dual-Band Wi-Fi Dataset for Fingerprinting Positioning in Symmetric Indoor Environments," Data, MDPI, vol. 8(1), pages 1-38, January.
    17. Guillermo Fuertes & Jorge Zamorano & Miguel Alfaro & Manuel Vargas & Jorge Sabattin & Claudia Duran & Rodrigo Ternero & Ricardo Rivera, 2022. "Opportunities of the Technological Trends Linked to Industry 4.0 for Achieve Sustainable Manufacturing Objectives," Sustainability, MDPI, vol. 14(18), pages 1-36, September.
    18. Bolbot, Victor & Theotokatos, Gerasimos & Bujorianu, Luminita Manuela & Boulougouris, Evangelos & Vassalos, Dracos, 2019. "Vulnerabilities and safety assurance methods in Cyber-Physical Systems: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 179-193.
    19. Pi, Shiqiang & Liu, Ying & Chen, Haiyan & Deng, Yan & Xiao, Longyuan, 2021. "Probability of loss of assured safety in systems with weak and strong links subject to dependent failures and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:13915-:d:953882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.