Crop Water Requirements with Changing Climate in an Arid Region of Saudi Arabia
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mahmoud, Shereif H. & Gan, Thian Yew, 2019. "Irrigation water management in arid regions of Middle East: Assessing spatio-temporal variation of actual evapotranspiration through remote sensing techniques and meteorological data," Agricultural Water Management, Elsevier, vol. 212(C), pages 35-47.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng Fang & Jing Wang & Jingjing Lin & Yuxia Xu & Guoyang Lu & Xin Wang & Pengcheng Huang & Yuhan Huang & Fei Yin, 2023. "Risk Assessment of Maize Yield Losses in Gansu Province Based on Spatial Econometric Analysis," Agriculture, MDPI, vol. 13(7), pages 1-26, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chi Yunxian & Li Renjie & Zhao Shuliang & Guo Fenghua, 2020. "Measuring multi-spatiotemporal scale tourist destination popularity based on text granular computing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-33, April.
- Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
- Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
- Maselli, F. & Chiesi, M. & Angeli, L. & Fibbi, L. & Rapi, B. & Romani, M. & Sabatini, F. & Battista, P., 2020. "An improved NDVI-based method to predict actual evapotranspiration of irrigated grasses and crops," Agricultural Water Management, Elsevier, vol. 233(C).
- Filgueiras, Roberto & Almeida, Thomé Simpliciano & Mantovani, Everardo Chartuni & Dias, Santos Henrique Brant & Fernandes-Filho, Elpídio Inácio & da Cunha, Fernando França & Venancio, Luan Peroni, 2020. "Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data," Agricultural Water Management, Elsevier, vol. 241(C).
- Zhang, Yu & Han, Wenting & Zhang, Huihui & Niu, Xiaotao & Shao, Guomin, 2023. "Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 275(C).
- Nagat Ahmed Elmulthum & Faisal Ibrahim Zeineldin & Suliman Ali Al-Khateeb & Khalid Mohammed Al-Barrak & Tagelsir Ahmed Mohammed & Muhammad Naeem Sattar & Akbar S. Mohmand, 2023. "Water Use Efficiency and Economic Evaluation of the Hydroponic versus Conventional Cultivation Systems for Green Fodder Production in Saudi Arabia," Sustainability, MDPI, vol. 15(1), pages 1-13, January.
- Laishram Kanta Singh & Madan K. Jha & V. M. Chowdary, 2021. "Evaluation of water demand and supply under varying meteorological conditions in Eastern India and mitigation strategies for sustainable agricultural production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1264-1291, February.
- Campana, P.E. & Lastanao, P. & Zainali, S. & Zhang, J. & Landelius, T. & Melton, F., 2022. "Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective," Agricultural Water Management, Elsevier, vol. 271(C).
- Santos, Jannaylton Everton Oliveira & Cunha, Fernando França da & Filgueiras, Roberto & Silva, Gustavo Henrique da & Castro Teixeira, Antônio Heriberto de & Santos Silva, Francisco Charles dos & Sediy, 2020. "Performance of SAFER evapotranspiration using missing meteorological data," Agricultural Water Management, Elsevier, vol. 233(C).
- Bashar Bashir & Abdullah Alsalman & Arsalan Ahmed Othman & Ahmed K. Obaid & Hussein Bashir, 2021. "New Approach to Selecting Civil Defense Centers in Al-Riyadh City (KSA) Based on Multi-Criteria Decision Analysis and GIS," Land, MDPI, vol. 10(11), pages 1-19, October.
- Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
More about this item
Keywords
agriculture; Saudi Arabia; CWR; evapotranspiration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13554-:d:948040. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.