IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13465-d946522.html
   My bibliography  Save this article

Coupling Hydrological and Hydrodynamic Models for Assessing the Impact of Water Pollution on Lake Evaporation

Author

Listed:
  • Janine Brandão de Farias Mesquita

    (Campus Crateús, Federal University of Ceará—UFC, Crateús 63708-825, Brazil)

  • Iran Eduardo Lima Neto

    (Department of Hydraulic and Environmental Engineering, Federal University of Ceará—UFC, Fortaleza 60020-181, Brazil)

Abstract

The present study evaluated the impact of hydrological variability on the hydrodynamics of an urban lake in Brazil, considering water quality dynamics and its effects on evaporation. The Storm Water Management Model (SWMM) was applied to the lake basin, and the two-dimensional model CE-QUAL-W2 was used to simulate the hydrodynamics and lake evaporation. The two models were coupled to carry out the integrated basin-lake modeling. Then, two water quality models were applied: a transient complete mixing model and an empirical model based on wind speed. Time series of total phosphorus (TP) were generated, and empirical correlations between TP and hydrological variables were proposed. Modeled TP and measured biochemical oxygen demand (BOD) were correlated with monthly Class A pan coefficients (K) adjusted for the lake. The K-values were negatively correlated with TP modeled by the complete mixing model (R 2 = 0.76) and the empirical model (R 2 = 0.52), as well as by BOD measurements (R 2 = 0.85). This indicates that water pollution attenuates evaporation rates. Scenarios of lake pollution and level reduction due to evaporation were also analyzed. The results from this study are important to improve the management of lakes and reservoirs by including the impact of pollution on the water balance.

Suggested Citation

  • Janine Brandão de Farias Mesquita & Iran Eduardo Lima Neto, 2022. "Coupling Hydrological and Hydrodynamic Models for Assessing the Impact of Water Pollution on Lake Evaporation," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13465-:d:946522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Iestyn Woolway & Sapna Sharma & Gesa A. Weyhenmeyer & Andrey Debolskiy & Malgorzata Golub & Daniel Mercado-Bettín & Marjorie Perroud & Victor Stepanenko & Zeli Tan & Luke Grant & Robert Ladwig & Jo, 2021. "Phenological shifts in lake stratification under climate change," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Gregorio Alejandro López Moreira M. & Luigi Hinegk & Andrea Salvadore & Guido Zolezzi & Franz Hölker & Roger Arturo Monte Domecq S. & Martina Bocci & Sebastiano Carrer & Luca De Nat & Juan Escribá & C, 2018. "Eutrophication, Research and Management History of the Shallow Ypacaraí Lake (Paraguay)," Sustainability, MDPI, vol. 10(7), pages 1-32, July.
    3. Martin T. Dokulil & Elvira Eyto & Stephen C. Maberly & Linda May & Gesa A. Weyhenmeyer & R. Iestyn Woolway, 2021. "Increasing maximum lake surface temperature under climate change," Climatic Change, Springer, vol. 165(3), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuanyuan Yang & Wenhui Zhang & Zhe Liu & Dengfeng Liu & Qiang Huang & Jun Xia, 2023. "Coupling a Distributed Time Variant Gain Model into a Storm Water Management Model to Simulate Runoffs in a Sponge City," Sustainability, MDPI, vol. 15(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Iestyn Woolway, 2023. "The pace of shifting seasons in lakes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Lei Huang & Axel Timmermann & Sun-Seon Lee & Keith B. Rodgers & Ryohei Yamaguchi & Eui-Seok Chung, 2022. "Emerging unprecedented lake ice loss in climate change projections," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Jian Zhou & Peter R. Leavitt & Kevin C. Rose & Xiwen Wang & Yibo Zhang & Kun Shi & Boqiang Qin, 2023. "Controls of thermal response of temperate lakes to atmospheric warming," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Joanna Sender & Danuta Urban & Monika Różańska-Boczula & Antoni Grzywna, 2021. "Long-Term Changes in Floristic Diversity as an Effect of Transforming the Lake into a Retention Reservoir," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    5. Konstantinos Stefanidis & George Varlas & Anastasios Papadopoulos & Elias Dimitriou, 2021. "Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece," Sustainability, MDPI, vol. 13(17), pages 1-14, September.
    6. Dibike, Yonas & Marshall, Rebecca & de Rham, Laurent, 2024. "Climatic sensitivity of seasonal ice-cover, water temperature and biogeochemical cycling in Lake 239 of the Experimental Lakes Area (ELA), Ontario, Canada," Ecological Modelling, Elsevier, vol. 489(C).
    7. Zhang, Peng & Li, Kefeng & Liu, Qingyuan & Zou, Qingping & Liang, Ruifeng & Qin, Leilei & Wang, Yuanming, 2024. "Thermal stratification characteristics and cooling water shortage risks for pumped storage reservoir–green data centers under extreme climates," Renewable Energy, Elsevier, vol. 229(C).
    8. Imran Khaliq & Christian Rixen & Florian Zellweger & Catherine H. Graham & Martin M. Gossner & Ian R. McFadden & Laura Antão & Jakob Brodersen & Shyamolina Ghosh & Francesco Pomati & Ole Seehausen & T, 2024. "Warming underpins community turnover in temperate freshwater and terrestrial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Temidayo Olowoyeye & Mariusz Ptak & Mariusz Sojka, 2023. "How Do Extreme Lake Water Temperatures in Poland Respond to Climate Change?," Resources, MDPI, vol. 12(9), pages 1-19, September.
    10. Xinyu Li & Shushi Peng & Yi Xi & R. Iestyn Woolway & Gang Liu, 2022. "Earlier ice loss accelerates lake warming in the Northern Hemisphere," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Patricia Elgoibar & Elio Shijaku, 2022. "Bringing the Social Back into Sustainability: Why Integrative Negotiation Matters," Sustainability, MDPI, vol. 14(11), pages 1-12, May.
    12. Nobre, Regina & Boulêtreau, Stéphanie & Colas, Fanny & Azemar, Frederic & Tudesque, Loïc & Parthuisot, Nathalie & Favriou, Pierre & Cucherousset, Julien, 2023. "Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. R. Iestyn Woolway & Yan Tong & Lian Feng & Gang Zhao & Dieu Anh Dinh & Haoran Shi & Yunlin Zhang & Kun Shi, 2024. "Multivariate extremes in lakes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13465-:d:946522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.