IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i12d10.1007_s11269-019-02371-z.html
   My bibliography  Save this article

Real Options Analysis as an Economic Evaluation Method for Rainwater Harvesting Systems

Author

Listed:
  • Gabriela Cristina Ribeiro Pacheco

    (Federal University of Goiás)

  • Marcus André Siqueira Campos

    (Federal University of Goiás)

Abstract

Rainwater harvesting systems (RWHSs) are increasingly employed to reduce the impact of water scarcity in urban buildings. Implementation depends on their financial feasibility, which is generally assessed using discounted cash flow methods. However, these techniques do not consider uncertainties in demand, rainfall, and water tariffs, which can have considerable effects. This work aims to apply real options analysis (ROA)—which evaluates options by establishing ta value for flexibility—to determine the feasibility of RWHSs. A case study incorporating management flexibility was conducted in three university buildings; it showed that uncertainty can present a strategic opportunity based on the possibility of RWHS expansion. The traditional net present value (NPV) and option value were calculated and compared with the result that ROA increased the NPV by more than five times. Thus, it was confirmed that options pricing increases projects’ values and presents opportunity gains for investments, especially when NPV without flexibility is close to zero. With ROA, systems that do not appear to have economic returns with conventional analysis may become feasible. Therefore, ROA is expected to replace conventional methods in RWHS investment decisions, as it can incorporate uncertainties, making the systems more economically attractive.

Suggested Citation

  • Gabriela Cristina Ribeiro Pacheco & Marcus André Siqueira Campos, 2019. "Real Options Analysis as an Economic Evaluation Method for Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4401-4415, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02371-z
    DOI: 10.1007/s11269-019-02371-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02371-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02371-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    2. Taeil Park & Changyoon Kim & Hyoungkwan Kim, 2014. "Valuation of Drainage Infrastructure Improvement Under Climate Change Using Real Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 445-457, January.
    3. Byungil Kim & Kyle Anderson & SangHyun Lee & Hyoungkwan Kim, 2014. "A Real Option Perspective to Value the Multi-Stage Construction of Rainwater Harvesting Systems Reusing Septic Tank," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2279-2291, June.
    4. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    5. Pongsak Suttinon & Seigo Nasu, 2010. "Real Options for Increasing Value in Industrial Water Infrastructure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2881-2892, September.
    6. Dixit, Avinash K. & Pindyck, Robert S., 1995. "The new option view of investment," Working papers 3794-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    7. Anirban Khastagir & Niranjali Jayasuriya, 2011. "Investment Evaluation of Rainwater Tanks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3769-3784, November.
    8. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    9. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byungil Kim & Kyle Anderson & SangHyun Lee & Hyoungkwan Kim, 2014. "A Real Option Perspective to Value the Multi-Stage Construction of Rainwater Harvesting Systems Reusing Septic Tank," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2279-2291, June.
    2. repec:dau:papers:123456789/1046 is not listed on IDEAS
    3. Monzur A. Imteaz & Hassaan Ahmad & Iqbal Hossain, 2023. "Pioneer Use of Pseudo Sub-Daily Timestep Model for Rainwater Harvesting Analysis: Acceptance over Hourly Model and Exploring Accuracy of Different Operating Algorithms," Sustainability, MDPI, vol. 15(5), pages 1-13, February.
    4. Abdul Salam Khan, 2023. "A Comparative Analysis of Rainwater Harvesting System and Conventional Sources of Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2083-2106, March.
    5. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    6. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    7. Xueer Jing & Shouhong Zhang & Jianjun Zhang & Yujie Wang & Yunqi Wang & Tongjia Yue, 2018. "Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2649-2664, June.
    8. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    9. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    10. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    11. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    12. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    13. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    14. Helga Meier & Nicos Christofides & Gerry Salkin, 2001. "Capital Budgeting Under Uncertainty---An Integrated Approach Using Contingent Claims Analysis and Integer Programming," Operations Research, INFORMS, vol. 49(2), pages 196-206, April.
    15. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    16. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    17. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    18. Juan M. Londono & Mehrdad Samadi, 2023. "The Price of Macroeconomic Uncertainty: Evidence from Daily Options," International Finance Discussion Papers 1376, Board of Governors of the Federal Reserve System (U.S.).
    19. Chia-Lin Chang & Tai-Lin Hsieh & Michael McAleer, 2016. "Connecting VIX and Stock Index ETF," Tinbergen Institute Discussion Papers 16-010/III, Tinbergen Institute, revised 23 Jan 2017.
    20. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    21. Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:12:d:10.1007_s11269-019-02371-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.