IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i2d10.1007_s10668-018-0218-8.html
   My bibliography  Save this article

Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran

Author

Listed:
  • Iman Saeedi

    (Malayer University)

  • Mohsen Goodarzi

    (Michigan State University)

Abstract

Water scarcity is a big obstacle for developing urban landscapes in cities located in arid and semiarid areas. This issue is very critical in most parts of Iran including city of Malayer. Despite a high rate of physical development, Malayer University campus is suffering from a lack of sustainable water resources for landscape irrigation. Therefore, finding a sustainable water resource for this campus is crucial. Rainwater harvesting system, as an acceptable water resource management method, can be considered as an alternative method for landscape irrigation. Hence, the aim of this study is to determine the suitability and estimate the amount of collectible rainwater in the campus that can be used for landscape irrigation. To achieve these goals, the information such as meteorological data, topography maps, rainwater quality tests, soil experiments, and a land use map of the campus was collected. Then, the amount of collectible water based on the amount of precipitation and the area of non-permeable surfaces was calculated. Based on the average amount of precipitation from 1990 to 2013, we found the potentially collectible rainwater from November to March of each year that can be used in the dry seasons. The volume of collectible rainwater was estimated to be 10,927.7, 17,204.5, and 1392.4 m3 from roofs, roads, and walkways, respectively. Three different scenarios for finding the optimum capacity of cisterns were suggested based on the amount and the periods of precipitation. After analyzing each scenario along with conducting a cost–benefit analysis, the most suitable scenario for the capacity of cisterns was suggested. Finally, based on the location of the non-permeable surfaces, the location of the target green spaces, and topography of the site, the most appropriate locations for placing the cisterns were proposed. As the problem of water shortage and lack of appropriate water resource management is threatening many cities in the developing countries, this study can be beneficial for all those regions.

Suggested Citation

  • Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0218-8
    DOI: 10.1007/s10668-018-0218-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0218-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0218-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinyoung Kim & Hiroaki Furumai, 2012. "Assessment of Rainwater Availability by Building Type and Water Use Through GIS-based Scenario Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1499-1511, April.
    2. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    3. Xingqi Zhang & Maochuan Hu & Gang Chen & Youpeng Xu, 2012. "Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3757-3766, October.
    4. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumar Farooq & Khalid Mahmood & Fiza Faizi, 2022. "Comparative Simulation of GIS-Based Rainwater Management Solutions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3049-3065, July.
    2. Raziyeh Teimouri & Sadasivam Karuppannan & Alpana Sivam & Ning Gu & Komali Yenneti, 2023. "Exploring International Perspective on Factors Affecting Urban Socio-Ecological Sustainability by Green Space Planning," Sustainability, MDPI, vol. 15(19), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingqi Zhang & Xinya Guo & Maochuan Hu, 2016. "Hydrological effect of typical low impact development approaches in a residential district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 389-400, January.
    2. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    3. Jing, Xueer & Zhang, Shouhong & Zhang, Jianjun & Wang, Yujie & Wang, Yunqi, 2017. "Assessing efficiency and economic viability of rainwater harvesting systems for meeting non-potable water demands in four climatic zones of China," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 74-85.
    4. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    5. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    6. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    8. Rodrigo Novais Istchuk & Enedir Ghisi, 2022. "Financial Feasibility Analysis of Residential Rainwater Harvesting in Maringá, Brazil," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    9. Yajing Huang & Linyu Xu & Hao Yin & YanpengCai & ZhifengYang, 2015. "Dual-Level Material and Psychological Assessment of Urban Water Security in a Water-Stressed Coastal City," Sustainability, MDPI, vol. 7(4), pages 1-19, April.
    10. Mohsen Goodarzi & Nafiseh Haghtalab & Iman Saeedi & Nathan J. Moore, 2020. "Structural and functional improvement of urban fringe areas: toward achieving sustainable built–natural environment interactions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6727-6754, October.
    11. Gabriela Cristina Ribeiro Pacheco & Marcus André Siqueira Campos, 2019. "Real Options Analysis as an Economic Evaluation Method for Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4401-4415, September.
    12. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.
    13. Xueer Jing & Shouhong Zhang & Jianjun Zhang & Yujie Wang & Yunqi Wang & Tongjia Yue, 2018. "Analysis and Modelling of Stormwater Volume Control Performance of Rainwater Harvesting Systems in Four Climatic Zones of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2649-2664, June.
    14. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    15. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    16. Lúcio Proença & Enedir Ghisi, 2013. "Assessment of Potable Water Savings in Office Buildings Considering Embodied Energy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 581-599, January.
    17. Jinping Zhang & Hang Zhang & Hongyuan Fang, 2022. "Study on Urban Rainstorms Design Based on Multivariate Secondary Return Period," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2293-2307, May.
    18. Gabriel Yoshino & Lindemberg Fernandes & Júnior Ishihara & Adnilson Silva, 2014. "Use of rainwater for non-potable purposes in the Amazon," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(2), pages 431-442, April.
    19. Xingqi Zhang & Maochuan Hu & Gang Chen & Youpeng Xu, 2012. "Urban Rainwater Utilization and its Role in Mitigating Urban Waterlogging Problems—A Case Study in Nanjing, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3757-3766, October.
    20. Huafei Yu & Yaolong Zhao & Yingchun Fu & Le Li, 2018. "Spatiotemporal Variance Assessment of Urban Rainstorm Waterlogging Affected by Impervious Surface Expansion: A Case Study of Guangzhou, China," Sustainability, MDPI, vol. 10(10), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:2:d:10.1007_s10668-018-0218-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.