IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11865-d920420.html
   My bibliography  Save this article

Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR

Author

Listed:
  • Jiahui Zhao

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Yong Zhu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Bin Zhang

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Mingyi Liu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Jianxing Wang

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Chenghao Liu

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

  • Yuanyuan Zhang

    (China Huaneng Group Clean Energy Research Institute (CERI), Beijing 102209, China)

Abstract

The state of health and remaining useful life of lithium-ion batteries are important indicators to ensure the reliable operation of these batteries. However, because they cannot be directly measured and are affected by many factors, they are difficult to predict. This paper presents method of jointly predicting state of health and RUL based on the long short-term memory neural network and Gaussian process regression. This method extracts the batteries’ health factors from the charging curve, selects health factors with more relevance than the setting standard as the characteristic of capacity by the maximum information coefficient method, and establishes the battery aging and remaining useful life prediction models with Gaussian process regression. On this basis, the long short-term memory neural network is used to predict the trend of the change in health factors with the increase in cycles, and the results are input into a Gaussian process regression aging model to predict the state of health. Taking the health factors and state of health as the characteristics of remaining useful battery life, a battery remaining useful life model based on Gaussian process regression is established, and the change trend in the remaining useful life can be obtained by inputting the predicted health factors and state of health. In this study, four battery data sets with different depths of charge were used to verify the accuracy and adaptability of the algorithm. The results show that the proposed algorithm has high accuracy and reliability.

Suggested Citation

  • Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Yuanyuan Zhang, 2022. "Method of Predicting SOH and RUL of Lithium-Ion Battery Based on the Combination of LSTM and GPR," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11865-:d:920420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11865/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11865/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Hu, Jianming & Wang, Jianzhou, 2015. "Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression," Energy, Elsevier, vol. 93(P2), pages 1456-1466.
    3. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
    4. Taichun Qin & Shengkui Zeng & Jianbin Guo & Zakwan Skaf, 2016. "A Rest Time-Based Prognostic Framework for State of Health Estimation of Lithium-Ion Batteries with Regeneration Phenomena," Energies, MDPI, vol. 9(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    2. Mingsan Ouyang & Peicheng Shen, 2022. "Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM," Energies, MDPI, vol. 15(23), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    2. Yanru Yang & Jie Wen & Jianyu Liang & Yuanhao Shi & Yukai Tian & Jiang Wang, 2023. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on the Partial Voltage and Temperature," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    3. Banguero, Edison & Correcher, Antonio & Pérez-Navarro, Ángel & García, Emilio & Aristizabal, Andrés, 2020. "Diagnosis of a battery energy storage system based on principal component analysis," Renewable Energy, Elsevier, vol. 146(C), pages 2438-2449.
    4. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Huang, Yaodi & Zhang, Pengcheng & Lu, Jiahuan & Xiong, Rui & Cai, Zhongmin, 2024. "A transferable long-term lithium-ion battery aging trajectory prediction model considering internal resistance and capacity regeneration phenomenon," Applied Energy, Elsevier, vol. 360(C).
    7. Jianxun Zhang & Xiao He & Xiaosheng Si & Changhua Hu & Donghua Zhou, 2017. "A Novel Multi-Phase Stochastic Model for Lithium-Ion Batteries’ Degradation with Regeneration Phenomena," Energies, MDPI, vol. 10(11), pages 1-24, October.
    8. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    9. Yang Hu & Yilin Qiao & Jingchun Chu & Ling Yuan & Lei Pan, 2019. "Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure," Energies, MDPI, vol. 12(11), pages 1-21, June.
    10. Ethelbert Ezemobi & Mario Silvagni & Ahmad Mozaffari & Andrea Tonoli & Amir Khajepour, 2022. "State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions," Energies, MDPI, vol. 15(3), pages 1-20, February.
    11. Jikai Bi & Jae-Cheon Lee & Hao Liu, 2022. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics," Energies, MDPI, vol. 15(7), pages 1-24, March.
    12. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Zhilong Wang & Chen Wang & Jie Wu, 2016. "Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms," Sustainability, MDPI, vol. 8(11), pages 1-32, November.
    14. Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
    15. Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    16. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    17. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    18. Jiale Xie & Jiachen Ma & Jun Chen, 2018. "Peukert-Equation-Based State-of-Charge Estimation for LiFePO4 Batteries Considering the Battery Thermal Evolution Effect," Energies, MDPI, vol. 11(5), pages 1-14, May.
    19. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    20. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11865-:d:920420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.