Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Granata, Francesco, 2019. "Evapotranspiration evaluation models based on machine learning algorithms—A comparative study," Agricultural Water Management, Elsevier, vol. 217(C), pages 303-315.
- Ferreira, Lucas Borges & da Cunha, Fernando França & Fernandes Filho, Elpídio Inácio, 2022. "Exploring machine learning and multi-task learning to estimate meteorological data and reference evapotranspiration across Brazil," Agricultural Water Management, Elsevier, vol. 259(C).
- Salah Basem Ajjur & Sami G. Al-Ghamdi, 2021. "Evapotranspiration and water availability response to climate change in the Middle East and North Africa," Climatic Change, Springer, vol. 166(3), pages 1-18, June.
- Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
- Ahmadi, Farshad & Mehdizadeh, Saeid & Mohammadi, Babak & Pham, Quoc Bao & DOAN, Thi Ngoc Canh & Vo, Ngoc Duong, 2021. "Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation," Agricultural Water Management, Elsevier, vol. 244(C).
- Abderraouf Elferchichi & Giuseppina A. Giorgio & Nicola Lamaddalena & Maria Ragosta & Vito Telesca, 2017. "Variability of Temperature and Its Impact on Reference Evapotranspiration: The Test Case of the Apulia Region (Southern Italy)," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jayashree T R & NV Subba Reddy & U Dinesh Acharya, 2023. "Modeling Daily Reference Evapotranspiration from Climate Variables: Assessment of Bagging and Boosting Regression Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1013-1032, February.
- Inga Dailidienė & Inesa Servaitė & Remigijus Dailidė & Erika Vasiliauskienė & Lolita Rapolienė & Ramūnas Povilanskas & Donatas Valiukas, 2023. "Increasing Trends of Heat Waves and Tropical Nights in Coastal Regions (The Case Study of Lithuania Seaside Cities)," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
- Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
- Fuentes, Sigfredo & Ortega-Farías, Samuel & Carrasco-Benavides, Marcos & Tongson, Eden & Gonzalez Viejo, Claudia, 2024. "Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling," Agricultural Water Management, Elsevier, vol. 297(C).
- Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
- Ali Barzkar & Mohammad Najafzadeh & Farshad Homaei, 2022. "Evaluation of drought events in various climatic conditions using data-driven models and a reliability-based probabilistic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1931-1952, February.
- Ibrahim A. Hasan & Mehmet Ishak Yuce, 2024. "Prediction of Potential Evapotranspiration via Machine Learning and Deep Learning for Sustainable Water Management in the Murat River Basin," Sustainability, MDPI, vol. 16(24), pages 1-23, December.
- Fabio Di Nunno & Marco De Matteo & Giovanni Izzo & Francesco Granata, 2023. "A Combined Clustering and Trends Analysis Approach for Characterizing Reference Evapotranspiration in Veneto," Sustainability, MDPI, vol. 15(14), pages 1-23, July.
- Beáta Novotná & Ľuboš Jurík & Ján Čimo & Jozef Palkovič & Branislav Chvíla & Vladimír Kišš, 2022. "Machine Learning for Pan Evaporation Modeling in Different Agroclimatic Zones of the Slovak Republic (Macro-Regions)," Sustainability, MDPI, vol. 14(6), pages 1-22, March.
- Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
- Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
- Yin, Juan & Deng, Zhen & Ines, Amor V.M. & Wu, Junbin & Rasu, Eeswaran, 2020. "Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM)," Agricultural Water Management, Elsevier, vol. 242(C).
- Zhou, Hanmi & Ma, Linshuang & Niu, Xiaoli & Xiang, Youzhen & Chen, Jiageng & Su, Yumin & Li, Jichen & Lu, Sibo & Chen, Cheng & Wu, Qi, 2024. "A novel hybrid model combined with ensemble embedded feature selection method for estimating reference evapotranspiration in the North China Plain," Agricultural Water Management, Elsevier, vol. 296(C).
- Granata, Francesco & Di Nunno, Fabio, 2021. "Forecasting evapotranspiration in different climates using ensembles of recurrent neural networks," Agricultural Water Management, Elsevier, vol. 255(C).
- Jamei, Mehdi & Maroufpoor, Saman & Aminpour, Younes & Karbasi, Masoud & Malik, Anurag & Karimi, Bakhtiar, 2022. "Developing hybrid data-intelligent method using Boruta-random forest optimizer for simulation of nitrate distribution pattern," Agricultural Water Management, Elsevier, vol. 270(C).
- Stephen Luo Sheng Yong & Jing Lin Ng & Yuk Feng Huang & Chun Kit Ang & Norashikin Ahmad Kamal & Majid Mirzaei & Ali Najah Ahmed, 2024. "Enhanced Daily Reference Evapotranspiration Estimation Using Optimized Hybrid Support Vector Regression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4213-4241, September.
- Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
- Phon Sheng Hou & Lokman Mohd Fadzil & Selvakumar Manickam & Mahmood A. Al-Shareeda, 2023. "Vector Autoregression Model-Based Forecasting of Reference Evapotranspiration in Malaysia," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
- Hadeel E. Khairan & Salah L. Zubaidi & Mustafa Al-Mukhtar & Anmar Dulaimi & Hussein Al-Bugharbee & Furat A. Al-Faraj & Hussein Mohammed Ridha, 2023. "Assessing the Potential of Hybrid-Based Metaheuristic Algorithms Integrated with ANNs for Accurate Reference Evapotranspiration Forecasting," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
- Xing, Liwen & Zhao, Lu & Cui, Ningbo & Liu, Chunwei & Guo, Li & Du, Taisheng & Wu, Zongjun & Gong, Daozhi & Jiang, Shouzheng, 2023. "Apple tree transpiration estimated using the Penman-Monteith model integrated with optimized jarvis model," Agricultural Water Management, Elsevier, vol. 276(C).
More about this item
Keywords
linear regression; machine learning; Penman–Monteith; polynomial regression; reference evapotranspiration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11674-:d:917273. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.