IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7079-d296456.html
   My bibliography  Save this article

Renewable Energy Generation Assessment in Terms of Small-Signal Stability

Author

Listed:
  • Mark Brian Dastas

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Hwachang Song

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

Abstract

The popularity and role of renewable energy in the power grid are increasing nowadays as countries are shifting to cleaner forms of energy. This brings new challenges in maintaining a secure and stable power system, as renewable energy is known to be intermittent in nature and may introduce stability issues to the grid. In this paper, a screening framework of renewable energy generation scenarios is proposed to determine which power system conditions and scenarios will make the system unstable. The scenario screening framework is based on a sensitivity analysis of the system eigenvalues with respect to the renewable energy penetration to the system. The average scheduled renewable energy output, forecasting error standard deviation, average forecasting error, and bus location of the renewable energy source were used to define a renewable energy generation scenario. Depending on the amount and variability of renewable energy, there is a possibility for a critical eigenvalue to cross the imaginary axis. The estimated eigenvalue location resulting from the penetration of variable renewable energy is computed by adding the computed eigenvalue sensitivity to the initial operating point. If any of the estimated system eigenvalues cross the imaginary axis, the power system might be unstable in this scenario, so it requires more detailed simulations and countermeasures. Renewable energy forecasting was done using the long short-term memory model, and the proposed method was simulated using the IEEE 39-bus New England test system. The results of the proposed method were verified by comparing the simulation results to the eigenanalysis solution. The obtained results have shown that the proposed method can determine whether the renewable energy generation scenario is critical in power system operation.

Suggested Citation

  • Mark Brian Dastas & Hwachang Song, 2019. "Renewable Energy Generation Assessment in Terms of Small-Signal Stability," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7079-:d:296456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iver Bakken Sperstad & Magnus Korpås, 2019. "Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties," Energies, MDPI, vol. 12(7), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Songran & Shao, Qinglong, 2021. "Exploring the determinants of renewable energy innovation considering the institutional factors: A negative binomial analysis," Technology in Society, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    3. Qinqin Cai & Yongqiang Zhu & Xiaohua Yang & Lin E, 2020. "Alterable Electricity Pricing Mechanism Considering the Deviation of Wind Power Prediction," Sustainability, MDPI, vol. 12(5), pages 1-12, March.
    4. Mahtab Kaffash & Glenn Ceusters & Geert Deconinck, 2021. "Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation," Energies, MDPI, vol. 14(10), pages 1-20, May.
    5. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    6. Nak Heon Choi & Diego del Olmo & Diego Milian & Nadia El Kissi & Peter Fischer & Karsten Pinkwart & Jens Tübke, 2020. "Use of Carbon Additives towards Rechargeable Zinc Slurry Air Flow Batteries," Energies, MDPI, vol. 13(17), pages 1-12, August.
    7. Mingyue He & Zahra Soltani & Mojdeh Khorsand & Aaron Dock & Patrick Malaty & Masoud Esmaili, 2022. "Behavior-Aware Aggregation of Distributed Energy Resources for Risk-Aware Operational Scheduling of Distribution Systems," Energies, MDPI, vol. 15(24), pages 1-18, December.
    8. Peng Tian & Zetao Li & Zhenghang Hao, 2019. "A Doubly-Fed Induction Generator Adaptive Control Strategy and Coordination Technology Compatible with Feeder Automation," Energies, MDPI, vol. 12(23), pages 1-21, November.
    9. Jun Dong & Zhenjie Chen & Xihao Dou, 2022. "The Influence of Multiple Types of Flexible Resources on the Flexibility of Power System in Northwest China," Sustainability, MDPI, vol. 14(18), pages 1-16, September.
    10. Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
    11. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.
    12. Xia, Yuanxing & Xu, Qingshan & Tao, Siyu & Du, Pengwei & Ding, Yixing & Fang, Jicheng, 2022. "Preserving operation privacy of peer-to-peer energy transaction based on Enhanced Benders Decomposition considering uncertainty of renewable energy generations," Energy, Elsevier, vol. 250(C).
    13. Rapeepat Techarungruengsakul & Anongrit Kangrang, 2022. "Application of Harris Hawks Optimization with Reservoir Simulation Model Considering Hedging Rule for Network Reservoir System," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    14. Lang Zhao & Yuan Zeng & Zhidong Wang & Yizheng Li & Dong Peng & Yao Wang & Xueying Wang, 2023. "Robust Optimal Scheduling of Integrated Energy Systems Considering the Uncertainty of Power Supply and Load in the Power Market," Energies, MDPI, vol. 16(14), pages 1-14, July.
    15. Hayder O. Alwan & Hamidreza Sadeghian & Sherif Abdelwahed, 2019. "Energy Management Optimization and Voltage Evaluation for Residential and Commercial Areas," Energies, MDPI, vol. 12(9), pages 1-21, May.
    16. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    17. Mandisi Gwabavu & Atanda Raji, 2021. "Dynamic Control of Integrated Wind Farm Battery Energy Storage Systems for Grid Connection," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    18. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. Rui Yan & Yuwen Chen & Xiaoning Zhu, 2022. "Optimization of Operating Hydrogen Storage System for Coal–Wind–Solar Power Generation," Energies, MDPI, vol. 15(14), pages 1-25, July.
    20. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2019. "Optimal Operation of Building Microgrids with Rooftop Greenhouse Under Component Outages in Islanded Mode," Energies, MDPI, vol. 12(10), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7079-:d:296456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.