IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11306-d910588.html
   My bibliography  Save this article

Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review

Author

Listed:
  • Amrita Kumari Panda

    (Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
    These authors contributed equally to this work.)

  • Rojita Mishra

    (Department of Botany, Polasara Science College, Polasara 761105, Odisha, India
    These authors contributed equally to this work.)

  • Joystu Dutta

    (Department of Environmental Sciences, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India)

  • Zishan Ahmad Wani

    (Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India)

  • Shreekar Pant

    (Center for Biodiversity Studies, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India)

  • Sazada Siddiqui

    (Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Saad Abdulrahman Alamri

    (Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Sulaiman A. Alrumman

    (Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Mohammed Ali Alkahtani

    (Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Satpal Singh Bisht

    (Department of Zoology, Kumaun University, Nainital 263002, Uttarakhand, India)

Abstract

The implementation of cutting-edge agricultural practices provides tools and techniques to drive climate-smart agriculture, reduce carbon emissions, and lower the carbon footprint. The alteration of climate conditions due to human activities poses a serious threat to the global agricultural systems. Greenhouse gas emissions (GHG) from organic waste management need urgent attention to optimize conventional composting strategies for organic wastes. The addition of various inorganic materials such as sawdust and fly ash mitigate GHG during the vermicomposting process. This paper critically investigates the factors responsible for GHG emissions during vermicomposting so that possible threats can be managed.

Suggested Citation

  • Amrita Kumari Panda & Rojita Mishra & Joystu Dutta & Zishan Ahmad Wani & Shreekar Pant & Sazada Siddiqui & Saad Abdulrahman Alamri & Sulaiman A. Alrumman & Mohammed Ali Alkahtani & Satpal Singh Bisht, 2022. "Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11306-:d:910588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11306/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11306/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ingrid M. Lubbers & Kees Jan van Groenigen & Steven J. Fonte & Johan Six & Lijbert Brussaard & Jan Willem van Groenigen, 2013. "Greenhouse-gas emissions from soils increased by earthworms," Nature Climate Change, Nature, vol. 3(3), pages 187-194, March.
    2. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bingzheng & Lu, Xiaofei & Zhang, Cancan & Wang, Hongsheng, 2022. "Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor," Renewable Energy, Elsevier, vol. 196(C), pages 782-799.
    2. Sapkota, Krishna & Gemechu, Eskinder & Oni, Abayomi Olufemi & Ma, Linwei & Kumar, Amit, 2022. "Greenhouse gas emissions from Canadian oil sands supply chains to China," Energy, Elsevier, vol. 251(C).
    3. Piris-Cabezas, Pedro & Lubowski, Ruben N. & Leslie, Gabriela, 2023. "Estimating the potential of international carbon markets to increase global climate ambition," World Development, Elsevier, vol. 167(C).
    4. Alt, Marius & Gallier, Carlo & Kesternich, Martin & Sturm, Bodo, 2023. "Collective minimum contributions to counteract the ratchet effect in the voluntary provision of public goods," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    5. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    6. Yafei Guo & Xiaoping Zhang & Yan Zhang & Donghui Wu & Neil McLaughlin & Shixiu Zhang & Xuewen Chen & Shuxia Jia & Aizhen Liang, 2019. "Temporal Variation of Earthworm Impacts on Soil Organic Carbon under Different Tillage Systems," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    7. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    8. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    9. Heleen L. Soest & Lara Aleluia Reis & Luiz Bernardo Baptista & Christoph Bertram & Jacques Després & Laurent Drouet & Michel Elzen & Panagiotis Fragkos & Oliver Fricko & Shinichiro Fujimori & Neil Gra, 2021. "Global roll-out of comprehensive policy measures may aid in bridging emissions gap," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Thananya Janhuaton & Vatanavongs Ratanavaraha & Sajjakaj Jomnonkwao, 2024. "Forecasting Thailand’s Transportation CO 2 Emissions: A Comparison among Artificial Intelligent Models," Forecasting, MDPI, vol. 6(2), pages 1-23, June.
    11. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    13. Yang, Shenyao & Hu, Shilai & Qi, Zhilin & Qi, Huiqing & Zhao, Guanqun & Li, Jiqiang & Yan, Wende & Huang, Xiaoliang, 2024. "Experiment and prediction for dynamic storage capacity of underground gas storage rebuilt from hydrocarbon reservoir," Renewable Energy, Elsevier, vol. 222(C).
    14. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    15. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Ana Luiza Carvalho Ferrer & Antonio Márcio Tavares Thomé, 2023. "Carbon Emissions in Transportation: A Synthesis Framework," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    17. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    18. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2018. "Future Trajectories of Renewable Energy Consumption in the European Union," Resources, MDPI, vol. 7(1), pages 1-13, February.
    19. Oppon, Eunice & Richter, Justin S. & Koh, S.C. Lenny & Nabayiga, Hellen, 2023. "Macro-level economic and environmental sustainability of negative emission technologies; Case study of crushed silicate production for enhanced weathering," Ecological Economics, Elsevier, vol. 204(PA).
    20. Chepeliev, Maksym & Osorio-Rodarte, Israel & van der Mensbrugghe, Dominique, 2021. "Distributional impacts of carbon pricing policies under the Paris Agreement: Inter and intra-regional perspectives," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11306-:d:910588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.