IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10430-d894555.html
   My bibliography  Save this article

Flash Flood Assessment and Management for Sustainable Development Using Geospatial Technology and WMS Models in Abha City, Aseer Region, Saudi Arabia

Author

Listed:
  • Mohd Yawar Ali Khan

    (Department of Hydrogeology, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mohamed ElKashouty

    (Department of Hydrogeology, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Ali M. Subyani

    (Department of Hydrogeology, Faculty of Earth Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Fuqiang Tian

    (Department of Hydraulic Engineering, School of Civil Engineering, Tsinghua University, Beijing 100084, China)

Abstract

Abha city is distinguished by urbanization, infrastructure, deepening watercourses, and changes in runoff flow which encourage flash floods in the urban zones of many villages in the region. AlMahalah village is prone to flash flooding due to its geographic location near the outlet of convergence streams of significant flow. The Geographic Information System (GIS), Remote Sensing (RS), Water Modeling System (WMS), and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) were used to assess the effects of flash floods on AlMahala village. Precipitation data from 1978 to 2020 was statistically processed and analysed to provide more information about flash flood hazards. With a 3-h lag time in both watersheds, the higher peak discharge in Wadi Abha than in Wadi Al Akkas indicates that flooding was a primary concern in Wadi Abha. With an average yearly rainfall of 520 mm, the hydrograph simulation from 1 to 5 April 2020 would contribute to the junction (outlet) point of AlMahala village with a peak discharge rate of 474.14 m 3 /s. The vegetation cover increased by 243 km 2 in 2020 compared to 2016. The HEC-RAS model was used to calculate the water depth, velocity, and elevation of the water surface with and without dam installation. The study provides the administration with practical and reasonable procedures for avoiding flash flood destruction in urban areas.

Suggested Citation

  • Mohd Yawar Ali Khan & Mohamed ElKashouty & Ali M. Subyani & Fuqiang Tian, 2022. "Flash Flood Assessment and Management for Sustainable Development Using Geospatial Technology and WMS Models in Abha City, Aseer Region, Saudi Arabia," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10430-:d:894555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Tauhidur Rahman & Adel S. Aldosary & Kh Md Nahiduzzaman & Imran Reza, 2016. "Vulnerability of flash flooding in Riyadh, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1807-1830, December.
    2. Allaoua Ansar & Azaiez Naima, 2021. "Mapping of Flood Zones in Urban Areas through a Hydro-climatic Approach: the Case of the City of Abha," Earth Science Research, Canadian Center of Science and Education, vol. 10(2), pages 1-1, December.
    3. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    4. Santiago Gaitan & Marie-claire ten Veldhuis & Nick Giesen, 2015. "Spatial Distribution of Flood Incidents Along Urban Overland Flow-Paths," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3387-3399, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Hanif & Muhammad Waqas & Amgad Muneer & Ayed Alwadain & Muhammad Atif Tahir & Muhammad Rafi, 2023. "DeepSDC: Deep Ensemble Learner for the Classification of Social-Media Flooding Events," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    2. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. İsmail Bilal Peker & Sezar Gülbaz & Vahdettin Demir & Osman Orhan & Neslihan Beden, 2024. "Integration of HEC-RAS and HEC-HMS with GIS in Flood Modeling and Flood Hazard Mapping," Sustainability, MDPI, vol. 16(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Ann Wheeler & Céline Nauges & Alec Zuo, 2021. "How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour," Post-Print hal-04670841, HAL.
    2. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    3. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    4. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    5. Malik, Ihtisham A. & Chowdhury, Hasibul & Alam, Md Samsul, 2023. "Equity market response to natural disasters: Does firm's corporate social responsibility make difference?," Global Finance Journal, Elsevier, vol. 55(C).
    6. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    7. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    8. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.
    9. van der Linden, Sander, 2014. "On the relationship between personal experience, affect and risk perception: the case of climate change," LSE Research Online Documents on Economics 57689, London School of Economics and Political Science, LSE Library.
    10. Vélez-Espino, Luis A. & Koops, Marten A., 2012. "Capacity for increase, compensatory reserves, and catastrophes as determinants of minimum viable population in freshwater fishes," Ecological Modelling, Elsevier, vol. 247(C), pages 319-326.
    11. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.
    13. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    14. Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
    15. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Kristie S. Gutierrez & Catherine E. LePrevost, 2016. "Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health," IJERPH, MDPI, vol. 13(2), pages 1-21, February.
    17. Maëlle Lefeuvre & ChuChu Lu & Carlos A Botero & Joanna Rutkowska, 2023. "Variable ambient temperature promotes song learning and production in zebra finches," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 408-417.
    18. Samuel A. Markolf & Kelly Klima & Terrence L. Wong, 2015. "Adaptation frameworks used by US decision-makers: a literature review," Environment Systems and Decisions, Springer, vol. 35(4), pages 427-436, December.
    19. Austin Becker & Michele Acciaro & Regina Asariotis & Edgard Cabrera & Laurent Cretegny & Philippe Crist & Miguel Esteban & Andrew Mather & Steve Messner & Susumu Naruse & Adolf Ng & Stefan Rahmstorf &, 2013. "A note on climate change adaptation for seaports: a challenge for global ports, a challenge for global society," Climatic Change, Springer, vol. 120(4), pages 683-695, October.
    20. Mercedes Campi & Marco Duenas & Giorgio Fagiolo, 2019. "How do countries specialize in food production? A complex-network analysis of the global agricultural product space," LEM Papers Series 2019/37, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10430-:d:894555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.