IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10312-d892188.html
   My bibliography  Save this article

The Importance of Adding Short-Wave Infrared Bands for Forest Disturbance Monitoring in the Subtropical Region

Author

Listed:
  • Xi Li

    (Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Yao Chen

    (Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Shixiong Jiang

    (Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Chongqing Wang

    (Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Sunxian Weng

    (Electric Power Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350007, China)

  • Dengyong Rao

    (GeoScene Information Technology Co., Ltd., Wuhan 430061, China)

Abstract

Forest disturbance, such as harvest and fire, can cause a huge amount of carbon emission from soil to the atmosphere. Monitoring forest disturbance at a high spatial resolution is critical for soil carbon modeling. The short-wave infrared bands are important bands in monitoring forest disturbance. However, many high spatial resolution satellites do not contain the short-wave infrared bands in their band designs, and whether the lack of short-wave infrared (SWIR) bands will cause a large influence on forest disturbance monitoring remains unclear. This study aims to evaluate the values of adding SWIR bands in forest disturbance monitoring using the modified continuous monitoring of land disturbance (COLD) approach. Results showed that without the SWIR bands the accuracy of detecting forest disturbance will be reduced by 19–26%. The highest accuracy of modified COLD using the optimal band combination with SWIR bands was 76.3% for monitoring harvest and 86.6% for monitoring fire, while it decreased to 49.8% in detecting harvest and 67.6% in detecting fire without using any SWIR bands. The results demonstrated the importance of adding SWIR bands in forest disturbance monitoring and would guide users to select the satellite data with at least one SWIR band to monitor forest disturbance for improving the soil carbon modeling.

Suggested Citation

  • Xi Li & Yao Chen & Shixiong Jiang & Chongqing Wang & Sunxian Weng & Dengyong Rao, 2022. "The Importance of Adding Short-Wave Infrared Bands for Forest Disturbance Monitoring in the Subtropical Region," Sustainability, MDPI, vol. 14(16), pages 1-9, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10312-:d:892188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xanthe J. Walker & Jennifer L. Baltzer & Steven G. Cumming & Nicola J. Day & Christopher Ebert & Scott Goetz & Jill F. Johnstone & Stefano Potter & Brendan M. Rogers & Edward A. G. Schuur & Merritt R., 2019. "Increasing wildfires threaten historic carbon sink of boreal forest soils," Nature, Nature, vol. 572(7770), pages 520-523, August.
    2. Yuanwei Qin & Xiangming Xiao & Jean-Pierre Wigneron & Philippe Ciais & Martin Brandt & Lei Fan & Xiaojun Li & Sean Crowell & Xiaocui Wu & Russell Doughty & Yao Zhang & Fang Liu & Stephen Sitch & Berri, 2021. "Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon," Nature Climate Change, Nature, vol. 11(5), pages 442-448, May.
    3. Adam F. A. Pellegrini & Anders Ahlström & Sarah E. Hobbie & Peter B. Reich & Lars P. Nieradzik & A. Carla Staver & Bryant C. Scharenbroch & Ari Jumpponen & William R. L. Anderegg & James T. Randerson , 2018. "Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity," Nature, Nature, vol. 553(7687), pages 194-198, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Yan & Guixiang Liu, 2021. "Fire’s Effects on Grassland Restoration and Biodiversity Conservation," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    2. Chao Xu & Teng-Chiu Lin & Jr-Chuan Huang & Zhijie Yang & Xiaofei Liu & Decheng Xiong & Shidong Chen & Minhuang Wang & Liuming Yang & Yusheng Yang, 2022. "Microbial Biomass Is More Important than Runoff Export in Predicting Soil Inorganic Nitrogen Concentrations Following Forest Conversion in Subtropical China," Land, MDPI, vol. 11(2), pages 1-15, February.
    3. Yang Shu & Chunming Shi & Bole Yi & Pengwu Zhao & Lijuan Guan & Mei Zhou, 2022. "Influence of Climatic Factors on Lightning Fires in the Primeval Forest Region of the Northern Daxing’an Mountains, China," Sustainability, MDPI, vol. 14(9), pages 1-11, May.
    4. Matheus Henrique Nunes & José Luís Campana Camargo & Grégoire Vincent & Kim Calders & Rafael S. Oliveira & Alfredo Huete & Yhasmin Mendes de Moura & Bruce Nelson & Marielle N. Smith & Scott C. Stark &, 2022. "Forest fragmentation impacts the seasonality of Amazonian evergreen canopies," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Florian Reiner & Martin Brandt & Xiaoye Tong & David Skole & Ankit Kariryaa & Philippe Ciais & Andrew Davies & Pierre Hiernaux & Jérôme Chave & Maurice Mugabowindekwe & Christian Igel & Stefan Oehmcke, 2023. "More than one quarter of Africa’s tree cover is found outside areas previously classified as forest," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Bragança, Arthur & Dahis, Ricardo, 2022. "Cutting special interests by the roots: Evidence from the Brazilian Amazon," Journal of Public Economics, Elsevier, vol. 215(C).
    7. Dorijan Radočaj & Mladen Jurišić & Oleg Antonić & Ante Šiljeg & Neven Cukrov & Irena Rapčan & Ivan Plaščak & Mateo Gašparović, 2022. "A Multiscale Cost–Benefit Analysis of Digital Soil Mapping Methods for Sustainable Land Management," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    8. Yuanwei Qin & Xiangming Xiao & Fang Liu & Fabio Sa e Silva & Yosio Shimabukuro & Egidio Arai & Philip Martin Fearnside, 2023. "Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon," Nature Sustainability, Nature, vol. 6(3), pages 295-305, March.
    9. Seyed Hossein Razavi Hajiagha & Hannan Amoozad Mahdiraji & Maryam Behnam & Boshra Nekoughadirli & Rohit Joshi, 2022. "A scenario-based robust time–cost tradeoff model to handle the effect of COVID-19 on supply chains project management," Operations Management Research, Springer, vol. 15(1), pages 357-377, June.
    10. Matheus Henrique Nunes & Marcel Caritá Vaz & José Luís Campana Camargo & William F. Laurance & Ana Andrade & Alberto Vicentini & Susan Laurance & Pasi Raumonen & Toby Jackson & Gabriela Zuquim & Jin W, 2023. "Edge effects on tree architecture exacerbate biomass loss of fragmented Amazonian forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Marcos Francos & Fernando Colino-Prieto & Carlos Sánchez-García, 2024. "How Mediterranean Ecosystem Deals with Wildfire Impact on Soil Ecosystem Services and Functions: A Review," Land, MDPI, vol. 13(4), pages 1-17, March.
    13. Emmett, Kristen D. & Renwick, Katherine M. & Poulter, Benjamin, 2021. "Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF," Ecological Modelling, Elsevier, vol. 440(C).
    14. Carson A. Baughman & Rachel A. Loehman & Dawn R. Magness & Lisa B. Saperstein & Rosemary L. Sherriff, 2020. "Four Decades of Land-Cover Change on the Kenai Peninsula, Alaska: Detecting Disturbance-Influenced Vegetation Shifts Using Landsat Legacy Data," Land, MDPI, vol. 9(10), pages 1-22, October.
    15. Jun Ma & Jiawei Li & Wanben Wu & Jiajia Liu, 2023. "Global forest fragmentation change from 2000 to 2020," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Jessica Stubenrauch & Beatrice Garske & Felix Ekardt & Katharina Hagemann, 2022. "European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target," Sustainability, MDPI, vol. 14(7), pages 1-35, April.
    17. Shu Wu, 2021. "RETRACTED: The Temporal-Spatial Distribution and Information-Diffusion-Based Risk Assessment of Forest Fires in China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    18. Pessôa, Ana Carolina M. & Morello R.S., Thiago F. & Silva-Junior, Celso H.L. & Doblas, Juan & Carvalho, Nathália S. & Aragão, Luiz E.O.C. & Anderson, Liana O., 2023. "Protected areas are effective on curbing fires in the Amazon," Ecological Economics, Elsevier, vol. 214(C).
    19. Selma Bultan & Julia E. M. S. Nabel & Kerstin Hartung & Raphael Ganzenmüller & Liang Xu & Sassan Saatchi & Julia Pongratz, 2022. "Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Yue Li & Paulo M. Brando & Douglas C. Morton & David M. Lawrence & Hui Yang & James T. Randerson, 2022. "Deforestation-induced climate change reduces carbon storage in remaining tropical forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10312-:d:892188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.