IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13859-d703290.html
   My bibliography  Save this article

RETRACTED: The Temporal-Spatial Distribution and Information-Diffusion-Based Risk Assessment of Forest Fires in China

Author

Listed:
  • Shu Wu

    (School of Economics, Zhejiang University of Finance and Economics, Hangzhou 310018, China)

Abstract

As forest fires are becoming a recurrent and severe issue in China, their temporal-spatial information and risk assessment are crucial for forest fire prevention and reduction. Based on provincial-level forest fire data during 1998–2017, this study adopts principal component analysis, clustering analysis, and the information diffusion theory to estimate the temporal-spatial distribution and risk of forest fires in China. Viewed from temporality, China’s forest fires reveal a trend of increasing first and then decreasing. Viewed from spatiality, provinces characterized by high population density and high coverage density are seriously affected, while eastern coastal provinces with strong fire management capabilities or western provinces with a low forest coverage rate are slightly affected. Through the principal component analysis, Hunan (1.33), Guizhou (0.74), Guangxi (0.51), Heilongjiang (0.48), and Zhejiang (0.46) are found to rank in the top five for the severity of forest fires. Further, Hunan (1089), Guizhou (659), and Guanxi (416) are the top three in the expected number of general forest fires, Fujian (4.70), Inner Mongolia (4.60), and Heilongjiang (3.73) are the top three in the expected number of large forest fires, and Heilongjiang (59,290), Inner Mongolia (20,665), and Hunan (5816) are the top three in the expected area of the burnt forest.

Suggested Citation

  • Shu Wu, 2021. "RETRACTED: The Temporal-Spatial Distribution and Information-Diffusion-Based Risk Assessment of Forest Fires in China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13859-:d:703290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Liang & Hong, Yiping & Zhou, Zaiying & Chen, Wenhui, 2021. "The frequency and severity of crop damage by wildlife in rural Beijing, China," Forest Policy and Economics, Elsevier, vol. 124(C).
    2. Dumollard, Gaspard, 2018. "Multiple-stand forest management under fire risk: Analytical characterization of stationary rotation ages and optimal carbon sequestration policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 146-154.
    3. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    4. Stéphane S. Couture & Arnaud A. Reynaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Post-Print hal-02651317, HAL.
    5. Galizia, Luiz Felipe & Alcasena, Fermín & Prata, Gabriel & Rodrigues, Marcos, 2021. "Assessing expected economic losses from wildfires in eucalypt plantations of western Brazil," Forest Policy and Economics, Elsevier, vol. 125(C).
    6. Adam F. A. Pellegrini & Anders Ahlström & Sarah E. Hobbie & Peter B. Reich & Lars P. Nieradzik & A. Carla Staver & Bryant C. Scharenbroch & Ari Jumpponen & William R. L. Anderegg & James T. Randerson , 2018. "Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity," Nature, Nature, vol. 553(7687), pages 194-198, January.
    7. Hassan Abedi Gheshlaghi & Bakhtiar Feizizadeh & Thomas Blaschke, 2020. "GIS-based forest fire risk mapping using the analytical network process and fuzzy logic," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(3), pages 481-499, February.
    8. Marcos Rodrigues & Adrián Jiménez & Juan de la Riva, 2016. "Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2049-2070, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Yeon-Su & Rodrigues, Marcos & Robinne, François-Nicolas, 2021. "Economic drivers of global fire activity: A critical review using the DPSIR framework," Forest Policy and Economics, Elsevier, vol. 131(C).
    2. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    3. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    4. G. Cornelis van Kooten & Tim Bogle & Frans P. de Vries, 2012. "Rent Seeking and the Smoke and Mirrors Game in the Creation of Forest Sector Carbon Credits: An Example from British Columbia," Working Papers 2012-06, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    5. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    6. Dumollard, Gaspard, 2018. "Multiple-stand forest management under fire risk: Analytical characterization of stationary rotation ages and optimal carbon sequestration policy," Journal of Forest Economics, Elsevier, vol. 32(C), pages 146-154.
    7. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    8. Zhou, Mo, 2015. "Adapting sustainable forest management to climate policy uncertainty: A conceptual framework," Forest Policy and Economics, Elsevier, vol. 59(C), pages 66-74.
    9. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.
    10. Ekholm, Tommi, 2020. "Optimal forest rotation under carbon pricing and forest damage risk," Forest Policy and Economics, Elsevier, vol. 115(C).
    11. Brèteau-Amores, Sandrine & Brunette, Marielle & Davi, Hendrik, 2019. "An Economic Comparison of Adaptation Strategies Towards a Drought-induced Risk of Forest Decline," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Stéphane S. Couture & Marie-Josée Cros & Régis Sabbadin, 2014. "Risk preferences and optimal management of uneven-aged forests in the presence of climate change: a Markov decision process approach," Post-Print hal-02741407, HAL.
    13. Couture, Stéphane & Cros, Marie-Josée & Sabbadin, Régis, 2016. "Risk aversion and optimal management of an uneven-aged forest under risk of windthrow: A Markov decision process approach," Journal of Forest Economics, Elsevier, vol. 25(C), pages 94-114.
    14. Hou, Guolong & Delang, Claudio O. & Lu, Xixi & Olschewski, Roland, 2020. "Optimizing rotation periods of forest plantations: The effects of carbon accounting regimes," Forest Policy and Economics, Elsevier, vol. 118(C).
    15. Ye Song & Hongjun Peng, 2019. "Strategies of Forestry Carbon Sink under Forest Insurance and Subsidies," Sustainability, MDPI, vol. 11(17), pages 1-13, August.
    16. Gaspard Dumollard & Stéphane De Cara, 2018. "Land allocation between a multiple-stand forest and agriculture under storm risk and recursive preferences," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 7(3), pages 256-268, July.
    17. Lessa Derci Augustynczik, Andrey & Yousefpour, Rasoul, 2021. "Assessing the synergistic value of ecosystem services in European beech forests," Ecosystem Services, Elsevier, vol. 49(C).
    18. Tommi Ekholm, 2019. "Optimal forest rotation under carbon pricing and forest damage risk," Papers 1912.00269, arXiv.org.
    19. Luo, Li & Gao, Yuan & Regan, Courtney M. & Summers, David M. & Connor, Jeffery D. & O'Hehir, Jim & Meng, Li & Chow, Christopher W.K., 2024. "Emissions offset incentives, carbon storage and profit optimization for Australian timber plantations," Forest Policy and Economics, Elsevier, vol. 159(C).
    20. Ekholm, Tommi, 2016. "Optimal forest rotation age under efficient climate change mitigation," Forest Policy and Economics, Elsevier, vol. 62(C), pages 62-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13859-:d:703290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.