IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304762.html
   My bibliography  Save this article

Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF

Author

Listed:
  • Emmett, Kristen D.
  • Renwick, Katherine M.
  • Poulter, Benjamin

Abstract

North American forests are threatened by changes in climate and disturbance dynamics. Current efforts to model future vegetation and fire dynamics are challenged by the lack of mechanistic representation of ecological processes, the spatial resolution to capture landscape-level heterogeneity, and the ability to model regional spatial extents. To address these gaps, a dynamic vegetation model was adapted for regional applications to the western forests of the U.S. Here we present LPJ-GUESS-LMfireCF, a dynamic vegetation model that includes the ecological processes of a dynamic global vegetation model with cohort-based forest demography (LPJ-GUESS) and a mechanistic fire module (LMfire), with a newly developed routine to simulate stand-replacing crown fires (CF). The LMfireCF fire module calculates surface fire and canopy characteristics to determine if critical conditions are met for crown fire initiation and spread, and if met, calculates crown fire effects. Adapting the model to regional applications required parameterization of dominant regional plant functional types (PFTs) and additional model adjustments related to the representation of fire. Simulations driven by historical climate data from 1980 to 2016 were made to compare the two different fire modules: the original GlobFIRM and newly created LMfireCF, and two different plant functional type (PFT) parameterizations: the original global vs. newly created regional PFTs. Model performance was evaluated by comparing simulation outputs to field and satellite-based estimates for landscape biomass distribution, dominant plant cover, fire activity, and forest regeneration. LPJ-GUESS-LMfireCF accurately represented vegetational zones with elevation and climate gradients in Yellowstone National Park (YNP). Total carbon in aboveground live vegetation within YNP simulated by LPJ-GUESS-LMfireCF with the regional PFTs overestimated satellite-based estimates by 12% (44.8 TgC vs 39.9 TgC respectively). In comparison, an LPJ-GUESS simulation using the older GlobFIRM fire module and global PFTs resulted in total carbon in aboveground live vegetation of 225 Tg C for YNP, five times the satellite-based estimates. LPJ-GUESS-LMfireCF simulated burned area and fire severity approximated satellite-based observations. Importantly, LPJ-GUESS-LMfireCF simulated the large stand-replacing fires of 1988 in Yellowstone as emergent results without model initialization of vegetation cover or fire history. LPJ-GUESS-LMfireCF simulated that 25% of the area of YNP burned in 1988, compared to 36% based on field and satellite-based estimates. However, modeled postfire regrowth was more rapid than field-based estimations, with simulated mean biomass 24 years postfire (40.1 ± 1.65 Mg ha−1) 58% greater than field estimations (25.4 ± 2.5 Mg ha−1), yet simulated mean biomass for mature forests (>100 years old without a major disturbance) was 24% less than field estimations (58.4 ± 0.8 compared to 76.6 ± 3.5 Mg ha−1). In summary, LPJ-GUESS-LMfireCF effectively simulates regional crown fire dynamics and vegetation to more accurately model regional biomass, plant biogeography, and fire activity.

Suggested Citation

  • Emmett, Kristen D. & Renwick, Katherine M. & Poulter, Benjamin, 2021. "Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304762
    DOI: 10.1016/j.ecolmodel.2020.109417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xanthe J. Walker & Jennifer L. Baltzer & Steven G. Cumming & Nicola J. Day & Christopher Ebert & Scott Goetz & Jill F. Johnstone & Stefano Potter & Brendan M. Rogers & Edward A. G. Schuur & Merritt R., 2019. "Increasing wildfires threaten historic carbon sink of boreal forest soils," Nature, Nature, vol. 572(7770), pages 520-523, August.
    2. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    3. Zaichun Zhu & Shilong Piao & Ranga B. Myneni & Mengtian Huang & Zhenzhong Zeng & Josep G. Canadell & Philippe Ciais & Stephen Sitch & Pierre Friedlingstein & Almut Arneth & Chunxiang Cao & Lei Cheng &, 2016. "Greening of the Earth and its drivers," Nature Climate Change, Nature, vol. 6(8), pages 791-795, August.
    4. Guoping Tang & Brian Beckage & Benjamin Smith, 2012. "The potential transient dynamics of forests in New England under historical and projected future climate change," Climatic Change, Springer, vol. 114(2), pages 357-377, September.
    5. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Xu & He, Hong S. & Liang, Yu & Wu, Zhiwei, 2015. "Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model," Ecological Modelling, Elsevier, vol. 297(C), pages 1-10.
    2. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.
    3. Yang Shu & Chunming Shi & Bole Yi & Pengwu Zhao & Lijuan Guan & Mei Zhou, 2022. "Influence of Climatic Factors on Lightning Fires in the Primeval Forest Region of the Northern Daxing’an Mountains, China," Sustainability, MDPI, vol. 14(9), pages 1-11, May.
    4. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    5. Kai Cheng & Haitao Yang & Shengli Tao & Yanjun Su & Hongcan Guan & Yu Ren & Tianyu Hu & Wenkai Li & Guangcai Xu & Mengxi Chen & Xiancheng Lu & Zekun Yang & Yanhong Tang & Keping Ma & Jingyun Fang & Qi, 2024. "Carbon storage through China’s planted forest expansion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    7. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    10. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    11. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Chenglai Wu & Zhaohui Lin & Yaping Shao & Xiaohong Liu & Ying Li, 2022. "Drivers of recent decline in dust activity over East Asia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Wang, Lin & Zhao, Junsan & Lin, Yilin & Chen, Guoping, 2024. "Exploring ecological carbon sequestration advantage and economic responses in an ecological security pattern: A nature-based solutions perspective," Ecological Modelling, Elsevier, vol. 488(C).
    14. Liu, Zhengjia & Wang, Jieyong & Wang, Xiaoyue & Wang, Yongsheng, 2020. "Understanding the impacts of ‘Grain for Green’ land management practice on land greening dynamics over the Loess Plateau of China," Land Use Policy, Elsevier, vol. 99(C).
    15. Forrester, David I., 2014. "A stand-level light interception model for horizontally and vertically heterogeneous canopies," Ecological Modelling, Elsevier, vol. 276(C), pages 14-22.
    16. Peringer, Alexander & Buttler, Alexandre & Gillet, François & Pătru-Stupariu, Ileana & Schulze, Kiowa A. & Stupariu, Mihai-Sorin & Rosenthal, Gert, 2017. "Disturbance-grazer-vegetation interactions maintain habitat diversity in mountain pasture-woodlands," Ecological Modelling, Elsevier, vol. 359(C), pages 301-310.
    17. Xunming Wang & Quansheng Ge & Xin Geng & Zhaosheng Wang & Lei Gao & Brett A. Bryan & Shengqian Chen & Yanan Su & Diwen Cai & Jiansheng Ye & Jimin Sun & Huayu Lu & Huizheng Che & Hong Cheng & Hongyan L, 2023. "Unintended consequences of combating desertification in China," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    18. Xiongyi Zhang & Jia Ning, 2023. "Patterns, Trends, and Causes of Vegetation Change in the Three Rivers Headwaters Region," Land, MDPI, vol. 12(6), pages 1-19, May.
    19. Sallaba, Florian & Lehsten, Dörte & Seaquist, Jonathan & Sykes, Martin T., 2015. "A rapid NPP meta-model for current and future climate and CO2 scenarios in Europe," Ecological Modelling, Elsevier, vol. 302(C), pages 29-41.
    20. Wenqing Li & Rubén D. Manzanedo & Yuan Jiang & Wenqiu Ma & Enzai Du & Shoudong Zhao & Tim Rademacher & Manyu Dong & Hui Xu & Xinyu Kang & Jun Wang & Fang Wu & Xuefeng Cui & Neil Pederson, 2023. "Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.