IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p10231-d890698.html
   My bibliography  Save this article

Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink

Author

Listed:
  • Husam Abdulrasool Hasan

    (Department of Air Conditioning & Refrigeration Techniques, Al-Esra’a University College, Baghdad 10068, Iraq)

  • Jenan S. Sherza

    (Department of Air Conditioning & Refrigeration Techniques, Al-Esra’a University College, Baghdad 10068, Iraq)

  • Jasim M. Mahdi

    (Department of Energy Engineering, University of Baghdad, Baghdad 10071, Iraq)

  • Hussein Togun

    (Department of Biomedical Engineering, University of Thi-Qar, Nassiriya 64001, Iraq
    College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq)

  • Azher M. Abed

    (Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Babylon 51001, Iraq)

  • Raed Khalid Ibrahim

    (Department of Medical Instrumentation Engineering, Al-Farahidi University, Baghdad 10015, Iraq)

  • Wahiba Yaïci

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

Abstract

A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings indicate that the PV temperature would increase from 65 to 73 °C, when the solar irradiation increases from 500 to 960 W/m 2 , with and without cooling, respectively. Meanwhile, the output power increased from 35 to 55 W when the solar irradiation increased from 500 to 960 W/m 2 during the daytime. The impact of varying the mass flow rate of cooling water in the range of 4 to 16 L/min was also examined, and it was found that the cell temperature declines as the water flow increases in intensity throughout the daytime. The maximum cell temperature recorded for PV modules without cooling was in the middle of the day. The lowest cell temperature was also recorded in the middle of the day for a PVT solar system with 16 L/min of cooling water.

Suggested Citation

  • Husam Abdulrasool Hasan & Jenan S. Sherza & Jasim M. Mahdi & Hussein Togun & Azher M. Abed & Raed Khalid Ibrahim & Wahiba Yaïci, 2022. "Experimental Evaluation of the Thermoelectrical Performance of Photovoltaic-Thermal Systems with a Water-Cooled Heat Sink," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10231-:d:890698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/10231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/10231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin-Hee Kim & Sang-Myung Kim & Jun-Tae Kim, 2021. "Experimental Performance of an Advanced Air-Type Photovoltaic/Thermal (PVT) Collector with Direct Expansion Air Handling Unit (AHU)," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    2. Abed, Fayadh M. & Al-Douri, Y. & Al-Shahery, Ghazy. M.Y., 2014. "Review on the energy and renewable energy status in Iraq: The outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 816-827.
    3. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    4. Hissouf, Mohamed & Feddaoui, M’barek & Najim, Monssif & Charef, Adil, 2020. "Performance of a photovoltaic-thermal solar collector using two types of working fluids at different fluid channels geometry," Renewable Energy, Elsevier, vol. 162(C), pages 1723-1734.
    5. José A. López-Álvarez & Miguel Larrañeta & Elena Pérez-Aparicio & Manuel A. Silva-Pérez & Isidoro Lillo-Bravo, 2021. "An Approach to the Operation Modes and Strategies for Integrated Hybrid Parabolic Trough and Photovoltaic Solar Systems," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    6. M. Imtiaz Hussain & Jun-Tae Kim, 2020. "Performance Evaluation of Photovoltaic/Thermal (PV/T) System Using Different Design Configurations," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    7. Nikola Pokorny & Tomáš Matuška, 2020. "Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    8. Marco Noro & Renato Lazzarin, 2020. "PVT and ETC Coupling for Annual Heating and Cooling by Absorption Heat Pumps," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    9. Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Ali Alahmer & Hegazy Rezk, 2020. "Design, Modeling, and Experimental Investigation of Active Water Cooling Concentrating Photovoltaic System," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ha, Subin & Zhou, Zixuan & Im, Eun-Soon & Lee, Young-Mi, 2023. "Comparative assessment of future solar power potential based on CMIP5 and CMIP6 multi-model ensembles," Renewable Energy, Elsevier, vol. 206(C), pages 324-335.
    2. Mohammad Firoozzadeh & Marzieh Lotfi & Amir Hossein Shiravi, 2022. "An Experimental Study on Simultaneous Use of Metal Fins and Mirror to Improve the Performance of Photovoltaic Panels," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    3. Khaled Hossin & Hussain Attia, 2024. "Water-Cooling-Based Approach for PV System Performance Enhancement towards UAE Future Energy Efficiency Policies," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 433-440, January.
    4. Byeong-Hwa An & Kwang-Hwan Choi & Hwi-Ung Choi, 2022. "Influence of Triangle-Shaped Obstacles on the Energy and Exergy Performance of an Air-Cooled Photovoltaic Thermal (PVT) Collector," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Jiao & Zeyu Li, 2023. "An Updated Review of Solar Cooling Systems Driven by Photovoltaic–Thermal Collectors," Energies, MDPI, vol. 16(14), pages 1-34, July.
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    3. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    4. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    5. Hussain H. Al-Kayiem & Sanan T. Mohammad, 2019. "Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook," Resources, MDPI, vol. 8(1), pages 1-20, February.
    6. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.
    7. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    8. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    9. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    10. Abdelrazik, A.S. & Shboul, Bashar & Elwardany, Mohamed & Zohny, R.N. & Osama, Ahmed, 2022. "The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Khalaf, Arkan Elttayef & Eleiwi, Muhammad Asmail & Yassen, Tadahmun A., 2023. "Enhancing the overall performance of the hybrid solar photovoltaic collector by open water cycle jet-cooling," Renewable Energy, Elsevier, vol. 208(C), pages 492-503.
    12. Kexin Zhang & Ying Su & Haiyu Wang & Qian Wang & Kai Wang & Yisen Niu & Jifeng Song, 2022. "Highly Concentrated Solar Flux of Large Fresnel Lens Using CCD Camera-Based Method," Sustainability, MDPI, vol. 14(17), pages 1-16, September.
    13. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    14. Fatih Selimefendigil & Ceylin Şirin & Hakan F. Öztop, 2022. "Experimental Performance Analysis of a Solar Desalination System Modified with Natural Dolomite Powder Integrated Latent Heat Thermal Storage Unit," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    15. Alshibil, Ahssan M.A. & Vig, Piroska & Farkas, Istvan, 2024. "Performance enhancement attempts on the photovoltaic/thermal module and the sustainability achievements: A review," Energy, Elsevier, vol. 304(C).
    16. Parthiban, Anandhi & Baig, Hasan & Mallick, T.K. & Reddy, K.S., 2022. "Performance investigation of SUNTRAP module for different locations: An energy and exergy analysis," Renewable Energy, Elsevier, vol. 199(C), pages 140-156.
    17. Marco Noro, 2022. "Heating and Cooling Feasibility of Absorption Heat Pumps Driven by Evacuated Tube Solar Collectors: An Energy and Economic Analysis," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    18. Saeed Alqaed & Jawed Mustafa & Fahad Awjah Almehmadi, 2021. "Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East," IJERPH, MDPI, vol. 18(3), pages 1-16, January.
    19. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud & Sadeghi, Zeinolabedin, 2017. "Solar photovoltaic power plants in five top oil-producing countries in Middle East: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1271-1280.
    20. Bin Yan & Qiuxuan Wu & Xiaoni Chi & Chenxi Wu & Ping Luo & Yanbin Luo & Pingliang Zeng, 2022. "Numerical and Experimental Investigation of Photovoltaic/Thermal Systems: Parameter Analysis and Determination of Optimum Flow," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:10231-:d:890698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.