IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i3p1001-d485726.html
   My bibliography  Save this article

Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East

Author

Listed:
  • Saeed Alqaed

    (Department of Mechanical Engineering, College of Engineering, Najran University, King Abdulaziz Road 1988, Najran 61441, Saudi Arabia)

  • Jawed Mustafa

    (Department of Mechanical Engineering, College of Engineering, Najran University, King Abdulaziz Road 1988, Najran 61441, Saudi Arabia)

  • Fahad Awjah Almehmadi

    (College of Engineering, Muzahimiyah Branch, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

Abstract

Seawater or brackish water desalination is largely powered by fossil fuels, raising concerns about greenhouse gas emissions, particularly in the arid Middle East region. Many steps have been taken to implement solar resources to this issue; however, all attempts for all processing were concentrated on solar to electric conversion. To address these challenges, a small-scale reverse-osmosis (RO) desalination system that is in part powered by hybrid photovoltaic/thermal (PVT) solar collectors appropriate for a remote community in the Kingdom of Saudi Arabia (KSA) was designed and its power requirements calculated. This system provides both electricity to the pumps and low-temperature thermal energy to pre-heat the feedwater to reduce its viscosity, and thus to reduce the required pumping energy for the RO process and for transporting the feedwater. Results show that both thermal and electrical energy storage, along with conventional backup power, is necessary to operate the RO continuously and utilize all of the renewable energy collected by the PVT. A cost-optimal sizing of the PVT system is developed. It displays for a specific case that the hybrid PVT RO system employs 70% renewable energy while delivering desalinized water for a cost that is 18% less than the annual cost for driving the plant with 100% conventional electricity and no pre-heating of the feedwater. The design allows for the sizing of the components to achieve minimum cost at any desired level of renewable energy penetration.

Suggested Citation

  • Saeed Alqaed & Jawed Mustafa & Fahad Awjah Almehmadi, 2021. "Design and Energy Requirements of a Photovoltaic-Thermal Powered Water Desalination Plant for the Middle East," IJERPH, MDPI, vol. 18(3), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:1001-:d:485726
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/3/1001/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/3/1001/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    2. Zondag, H.A., 2008. "Flat-plate PV-Thermal collectors and systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 891-959, May.
    3. International Monetary Fund, 2015. "Saudi Arabia: Selected Issues," IMF Staff Country Reports 2015/286, International Monetary Fund.
    4. He, Wei & Chow, Tin-Tai & Ji, Jie & Lu, Jianping & Pei, Gang & Chan, Lok-shun, 2006. "Hybrid photovoltaic and thermal solar-collector designed for natural circulation of water," Applied Energy, Elsevier, vol. 83(3), pages 199-210, March.
    5. Nikola Pokorny & Tomáš Matuška, 2020. "Glazed Photovoltaic-thermal (PVT) Collectors for Domestic Hot Water Preparation in Multifamily Building," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    6. World Bank, 2012. "Renewable Energy Desalination : An Emerging Solution to Close the Water Gap in the Middle East and North Africa," World Bank Publications - Books, The World Bank Group, number 11963.
    7. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    8. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    9. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    10. Eltawil, Mohamed A. & Zhengming, Zhao & Yuan, Liqiang, 2009. "A review of renewable energy technologies integrated with desalination systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2245-2262, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Abdul Baseer & Venkatesan Vinoth Kumar & Ivan Izonin & Ivanna Dronyuk & Athyoor Kannan Velmurugan & Babu Swapna, 2023. "Novel Hybrid Optimization Techniques to Enhance Reliability from Reverse Osmosis Desalination Process," Energies, MDPI, vol. 16(2), pages 1-15, January.
    2. Mukhamad Faeshol Umam & Md. Hasanuzzaman & Nasrudin Abd Rahim, 2022. "Global Advancement of Nanofluid-Based Sheet and Tube Collectors for a Photovoltaic Thermal System," Energies, MDPI, vol. 15(15), pages 1-37, August.
    3. Ariana M. Pietrasanta & Mostafa F. Shaaban & Pio A. Aguirre & Sergio F. Mussati & Mohamed A. Hamouda, 2023. "Simulation and Optimization of Renewable Energy-Powered Desalination: A Bibliometric Analysis and Highlights of Recent Research," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    4. Jawed Mustafa & Fahad Awjah Almehmadi & Saeed Alqaed & Mohsen Sharifpur, 2022. "Building a Sustainable Energy Community: Design and Integrate Variable Renewable Energy Systems for Rural Communities," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    5. Tashtoush, Bourhan & Alyahya, Wa'ed & Al Ghadi, Malak & Al-Omari, Jamal & Morosuk, Tatiana, 2023. "Renewable energy integration in water desalination: State-of-the-art review and comparative analysis," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    2. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Widyolar, Bennett & Jiang, Lun & Brinkley, Jordyn & Hota, Sai Kiran & Ferry, Jonathan & Diaz, Gerardo & Winston, Roland, 2020. "Experimental performance of an ultra-low-cost solar photovoltaic-thermal (PVT) collector using aluminum minichannels and nonimaging optics," Applied Energy, Elsevier, vol. 268(C).
    5. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    6. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    7. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    8. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    9. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    11. Nosrat, Amir & Pearce, Joshua M., 2011. "Dispatch strategy and model for hybrid photovoltaic and trigeneration power systems," Applied Energy, Elsevier, vol. 88(9), pages 3270-3276.
    12. Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
    13. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    14. Buonomano, Annamaria & Calise, Francesco & Dentice d'Accadia, Massimo & Vanoli, Laura, 2013. "A novel solar trigeneration system based on concentrating photovoltaic/thermal collectors. Part 1: Design and simulation model," Energy, Elsevier, vol. 61(C), pages 59-71.
    15. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    16. Guo, Jinyi & Lin, Simao & Bilbao, Jose I. & White, Stephen D. & Sproul, Alistair B., 2017. "A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1-14.
    17. Saeed Abdul-Ganiyu & David A Quansah & Emmanuel W Ramde & Razak Seidu & Muyiwa S. Adaramola, 2020. "Investigation of Solar Photovoltaic-Thermal (PVT) and Solar Photovoltaic (PV) Performance: A Case Study in Ghana," Energies, MDPI, vol. 13(11), pages 1-17, May.
    18. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    19. Kumar, Ajay & Dhiman, Prashant, 2023. "Modeling and optimization of photovoltaic thermal system under recyclic operation by response surface methodology," Renewable Energy, Elsevier, vol. 203(C), pages 228-244.
    20. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:3:p:1001-:d:485726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.