IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2019i1p42-d208904.html
   My bibliography  Save this article

Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook

Author

Listed:
  • Hussain H. Al-Kayiem

    (Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

  • Sanan T. Mohammad

    (Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia)

Abstract

This study presents an outlook on the renewable energies in Iraq, and the potential for deploying concentrated solar power technologies to support power generation in Iraq. Solar energy has not been sufficiently utilized at present in Iraq. However, this energy source can play an important role in energy production in Iraq, as the global solar radiation ranging from 2000 kWh/m 2 to a 2500 kWh/m 2 annual daily average. In addition, the study presents the limited current solar energy activities in Iraq. The attempts of the Iraqi government to utilize solar energy are also presented. Two approaches for utilizing concentrated solar power have been proposed, to support existing thermal power generation, with the possibility of being implemented as standalone plants or being integrated with thermal power plants. However, the cost analysis has shown that for 50 kW concentrated solar power in Iraq, the cost is around 0.23 US cent/kWh without integration with energy storage. Additionally, notable obstacles and barriers bounding the utilization of solar energy are also discussed. Finally, this study proposes initiatives that can be adopted by the Iraqi government to support the use of renewable energy resources in general, and solar energy in particular.

Suggested Citation

  • Hussain H. Al-Kayiem & Sanan T. Mohammad, 2019. "Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook," Resources, MDPI, vol. 8(1), pages 1-20, February.
  • Handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:42-:d:208904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abed, Fayadh M. & Al-Douri, Y. & Al-Shahery, Ghazy. M.Y., 2014. "Review on the energy and renewable energy status in Iraq: The outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 816-827.
    2. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    3. Feltrin, Andrea & Freundlich, Alex, 2008. "Material considerations for terawatt level deployment of photovoltaics," Renewable Energy, Elsevier, vol. 33(2), pages 180-185.
    4. Dawson, Lucas & Schlyter, Peter, 2012. "Less is more: Strategic scale site suitability for concentrated solar thermal power in Western Australia," Energy Policy, Elsevier, vol. 47(C), pages 91-101.
    5. Poullikkas, Andreas, 2009. "Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region--A case study for the island of Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2474-2484, December.
    6. Al-Sakaf, Omar H., 1998. "Application possibilities of solar thermal power plants in Arab countries," Renewable Energy, Elsevier, vol. 14(1), pages 1-9.
    7. Manzolini, Giampaolo & Giostri, Andrea & Saccilotto, Claudio & Silva, Paolo & Macchi, Ennio, 2011. "Development of an innovative code for the design of thermodynamic solar power plants part A: Code description and test case," Renewable Energy, Elsevier, vol. 36(7), pages 1993-2003.
    8. Ab Kadir, Mohd Zainal Abidin & Rafeeu, Yaaseen & Adam, Nor Mariah, 2010. "Prospective scenarios for the full solar energy development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3023-3031, December.
    9. Jacobson, Mark Z. & Howarth, Robert W. & Delucchi, Mark A. & Scobie, Stan R. & Barth, Jannette M. & Dvorak, Michael J. & Klevze, Megan & Katkhuda, Hind & Miranda, Brian & Chowdhury, Navid A. & Jones, , 2013. "Examining the feasibility of converting New York State’s all-purpose energy infrastructure to one using wind, water, and sunlight," Energy Policy, Elsevier, vol. 57(C), pages 585-601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Memme, Samuele & Fossa, Marco, 2024. "A novel approach for incidence angle modifier calculation of arbitrarily oriented linear Fresnel collectors: Theory, simulations and case studies," Renewable Energy, Elsevier, vol. 222(C).
    2. Ismael Mohammed Saeed & Ahmad Tarkhany & Younis Hama & Shwan Al-Shatri, 2023. "Environmental considerations, sustainability opportunities and Iraqi government’s energy policies: a comparative study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6879-6895, July.
    3. Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Marek Jaszczur, 2023. "A Roadmap with Strategic Policy toward Green Hydrogen Production: The Case of Iraq," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    4. Hassan, Qusay & Khadom, Anees A. & Algburi, Sameer & Al-Jiboory, Ali Khudhair & Sameen, Aws Zuhair & Alkhafaji, Mohamed Ayad & Mahmoud, Haitham A. & Awwad, Emad Mahrous & Mahood, Hameed B. & Kazem, Hu, 2024. "Implications of a smart grid-integrated renewable distributed generation capacity expansion strategy: The case of Iraq," Renewable Energy, Elsevier, vol. 221(C).
    5. Shayma A. Al-Rubaye & Edwin C. Price, 2023. "The Economic Impacts of Using Renewable Energy Technologies for Irrigation Water Pumping and Nanoparticle Fertilizers on Agri-Food Production in Iraq," Sustainability, MDPI, vol. 15(6), pages 1-32, March.
    6. Memme, Samuele & Fossa, Marco, 2023. "Ray tracing analysis of linear Fresnel concentrators and the effect of plant azimuth on their optical efficiency," Renewable Energy, Elsevier, vol. 216(C).
    7. Ameer Al-Khaykan & Ibrahim H. Al-Kharsan & Mohammed Omar Ali & Ali Jawad Alrubaie & Hassan Falah Fakhruldeen & J. M. Counsell, 2022. "Impact of Multi-Year Analysis on the Optimal Sizing and Control Strategy of Hybrid Energy Systems," Energies, MDPI, vol. 16(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    2. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    3. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    4. Islam, Md Tasbirul & Huda, Nazmul & Saidur, R., 2019. "Current energy mix and techno-economic analysis of concentrating solar power (CSP) technologies in Malaysia," Renewable Energy, Elsevier, vol. 140(C), pages 789-806.
    5. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    6. García-Segura, A. & Fernández-García, A. & Ariza, M.J. & Sutter, F. & Valenzuela, L., 2016. "Durability studies of solar reflectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 453-467.
    7. Torres García, E. & Ogueta-Gutiérrez, M. & Ávila, S. & Franchini, S. & Herrera, E. & Meseguer, J., 2014. "On the effects of windbreaks on the aerodynamic loads over parabolic solar troughs," Applied Energy, Elsevier, vol. 115(C), pages 293-300.
    8. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    9. Jinping Wang & Jun Wang & Peter D. Lund & Hongxia Zhu, 2019. "Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators," Energies, MDPI, vol. 12(22), pages 1-17, November.
    10. Shayma A. Al-Rubaye & Edwin C. Price, 2023. "The Economic Impacts of Using Renewable Energy Technologies for Irrigation Water Pumping and Nanoparticle Fertilizers on Agri-Food Production in Iraq," Sustainability, MDPI, vol. 15(6), pages 1-32, March.
    11. Jamel, M.S. & Abd Rahman, A. & Shamsuddin, A.H., 2013. "Advances in the integration of solar thermal energy with conventional and non-conventional power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 71-81.
    12. Abed, Fayadh M. & Al-Douri, Y. & Al-Shahery, Ghazy. M.Y., 2014. "Review on the energy and renewable energy status in Iraq: The outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 816-827.
    13. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    14. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    16. Hong, Hui & Peng, Shuo & Zhang, Hao & Sun, Jie & Jin, Hongguang, 2017. "Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating," Energy, Elsevier, vol. 128(C), pages 830-838.
    17. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    18. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    19. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    20. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2019:i:1:p:42-:d:208904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.