IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9089-d870863.html
   My bibliography  Save this article

Perceived Walkability and Respective Urban Determinants: Insights from Bologna and Porto

Author

Listed:
  • Fernando Fonseca

    (Centre for Territory, Environment and Construction (CTAC), University of Minho, 4800-058 Guimarães, Portugal)

  • George Papageorgiou

    (SYSTEMA Research Centre, European University Cyprus, Engomi, Nicosia 2404, Cyprus)

  • Simona Tondelli

    (Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy)

  • Paulo Ribeiro

    (Centre for Territory, Environment and Construction (CTAC), University of Minho, 4800-058 Guimarães, Portugal)

  • Elisa Conticelli

    (Alma Mater Studiorum, University of Bologna, 40136 Bologna, Italy)

  • Mona Jabbari

    (Centre for Territory, Environment and Construction (CTAC), University of Minho, 4800-058 Guimarães, Portugal
    CitUpia AB, 104 30 Stockholm, Sweden)

  • Rui Ramos

    (Centre for Territory, Environment and Construction (CTAC), University of Minho, 4800-058 Guimarães, Portugal)

Abstract

Walking is undoubtedly a sustainable and healthy mode of transport. However, the decision to walk is influenced by many built environment and streetscape attributes. Specifically, the term walkability is used to describe the extent to which the urban environment is pedestrian-friendly, usually by quantifying multiple built environment attributes at the neighbourhood scale. The present study adopts a qualitative approach to evaluate perceived walkability. Based on a questionnaire ( n = 1438) administered in the cities of Bologna and Porto, this paper analyses how respondents perceived and evaluated 19 built environment and streetscape attributes. An Exploratory Factor Analysis was carried out to examine the correlations between the various attributes and to identify the underlying walkability determinants. The analysis indicated that 13 attributes were highly correlated, resulting in four determinants: (i) urban ambiance, which includes land use and street design attributes, such as land use mix, enclosure, transparency, and architectural and landscape diversity; (ii) pedestrian infrastructure, which is related to sidewalk conditions; (iii) street connectivity and proximity to community facilities; and iv) access to other modes of transport. In turn, traffic safety and security were not correlated with perceived walkability in both cities. These findings suggest that specific urban design and pedestrian infrastructure attributes should be highly considered when formulating policies aiming to create more pedestrian-friendly cities, as well as in walkability studies and when developing walkability scores and indexes.

Suggested Citation

  • Fernando Fonseca & George Papageorgiou & Simona Tondelli & Paulo Ribeiro & Elisa Conticelli & Mona Jabbari & Rui Ramos, 2022. "Perceived Walkability and Respective Urban Determinants: Insights from Bologna and Porto," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9089-:d:870863
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fancello, Giovanna & Congiu, Tanja & Tsoukiàs, Alexis, 2020. "Mapping walkability. A subjective value theory approach," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    2. Boulange, Claire & Pettit, Chris & Gunn, Lucy Dubrelle & Giles-Corti, Billie & Badland, Hannah, 2018. "Improving planning analysis and decision making: The development and application of a Walkability Planning Support System," Journal of Transport Geography, Elsevier, vol. 69(C), pages 129-137.
    3. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    4. Foster, Sarah & Wood, Lisa & Christian, Hayley & Knuiman, Matthew & Giles-Corti, Billie, 2013. "Planning safer suburbs: Do changes in the built environment influence residents' perceptions of crime risk?," Social Science & Medicine, Elsevier, vol. 97(C), pages 87-94.
    5. Saelens, B.E. & Sallis, J.F. & Black, J.B. & Chen, D., 2003. "Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1552-1558.
    6. Mika R. Moran & Efrat Eizenberg & Pnina Plaut, 2017. "Getting to Know a Place: Built Environment Walkability and Children’s Spatial Representation of Their Home-School (h–s) Route," IJERPH, MDPI, vol. 14(6), pages 1-21, June.
    7. Andrews, Gavin J. & Hall, Edward & Evans, Bethan & Colls, Rachel, 2012. "Moving beyond walkability: On the potential of health geography," Social Science & Medicine, Elsevier, vol. 75(11), pages 1925-1932.
    8. Byoung-Suk Kweon & Jody Rosenblatt-Naderi & Christopher D. Ellis & Woo-Hwa Shin & Blair H. Danies, 2021. "The Effects of Pedestrian Environments on Walking Behaviors and Perception of Pedestrian Safety," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    9. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    10. Mateo-Babiano, Iderlina, 2016. "Pedestrian's needs matter: Examining Manila's walking environment," Transport Policy, Elsevier, vol. 45(C), pages 107-115.
    11. Ana Isabel Ribeiro & Elaine Hoffimann, 2018. "Development of a Neighbourhood Walkability Index for Porto Metropolitan Area. How Strongly Is Walkability Associated with Walking for Transport?," IJERPH, MDPI, vol. 15(12), pages 1-10, December.
    12. Lindau, Luis Antonio & Hidalgo, Dario & de Almeida Lobo, Adriana, 2014. "Barriers to planning and implementing Bus Rapid Transit systems," Research in Transportation Economics, Elsevier, vol. 48(C), pages 9-15.
    13. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    14. Ismaïl Saadi & Roger Aganze & Mehdi Moeinaddini & Zohreh Asadi-Shekari & Mario Cools, 2021. "A Participatory Assessment of Perceived Neighbourhood Walkability in a Small Urban Environment," Sustainability, MDPI, vol. 14(1), pages 1-16, December.
    15. Tarek Al Shammas & Francisco Escobar, 2019. "Comfort and Time-Based Walkability Index Design: A GIS-Based Proposal," IJERPH, MDPI, vol. 16(16), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George N. Papageorgiou & Elena Tsappi, 2024. "Development of an Active Transportation Framework Model for Sustainable Urban Development," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    2. Eun Jung Kim & Suin Jin, 2023. "Walk Score and Neighborhood Walkability: A Case Study of Daegu, South Korea," IJERPH, MDPI, vol. 20(5), pages 1-12, February.
    3. Natalia Distefano & Salvatore Leonardi, 2023. "Fostering Urban Walking: Strategies Focused on Pedestrian Satisfaction," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    4. Olivia Psara & Fernando Fonseca & Olympia Nisiforou & Rui Ramos, 2023. "Evaluation of Urban Sustainability Based on Transportation and Green Spaces: The Case of Limassol, Cyprus," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    5. Muhammad Abdullah & Nazam Ali & Muhammad Ashraf Javid & Muhammad Waqar Aslam & Charitha Dias, 2023. "Signal-Free Corridor Development and Their Impact on Pedestrians: Insights from Expert and Public Surveys," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    6. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    7. Le Zhang & Xiaoxiao Xu & Yanlong Guo, 2022. "Comprehensive Evaluation of the Implementation Effect of Commercial Street Quality Improvement Based on AHP-Entropy Weight Method—Taking Hefei Shuanggang Old Street as an Example," Land, MDPI, vol. 11(11), pages 1-19, November.
    8. Chia-Yuan Yu, 2024. "Environmental Awareness and Walking Behavior to the Grocery Store," Sustainability, MDPI, vol. 16(17), pages 1-17, August.
    9. Suin Jin & Eun Jung Kim, 2024. "Correlation of the Walk Score and Environmental Perceptions with Perceived Neighborhood Walkability: The Quantile Regression Model Approach," Sustainability, MDPI, vol. 16(16), pages 1-16, August.
    10. Yang Ye & Chaozhi Jia & Stephan Winter, 2024. "Measuring Perceived Walkability at the City Scale Using Open Data," Land, MDPI, vol. 13(2), pages 1-17, February.
    11. Laura Eboli & Carmen Forciniti & Gabriella Mazzulla & Maria Grazia Bellizzi, 2023. "Establishing Performance Criteria for Evaluating Pedestrian Environments," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    12. Duncan, Michael, 2023. "The influence of pedestrian plans on walk commuting in US municipalities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    13. Yuka Bando & Kento Yoh & Kanyou Sou & Chun-Chen Chou & Kenji Doi, 2023. "AI-Based Evaluation of Streets for People in Bangkok: Perspectives from Walkability and Lingerability," Sustainability, MDPI, vol. 15(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    2. Loo, Becky P.Y., 2021. "Walking towards a happy city," Journal of Transport Geography, Elsevier, vol. 93(C).
    3. Ivan Blečić & Tanja Congiu & Giovanna Fancello & Giuseppe Andrea Trunfio, 2020. "Planning and Design Support Tools for Walkability: A Guide for Urban Analysts," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    4. Fernando Fonseca & Elisa Conticelli & George Papageorgiou & Paulo Ribeiro & Mona Jabbari & Simona Tondelli & Rui Ramos, 2021. "Levels and Characteristics of Utilitarian Walking in the Central Areas of the Cities of Bologna and Porto," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    5. Kevin Credit & Elizabeth Mack, 2019. "Place-making and performance: The impact of walkable built environments on business performance in Phoenix and Boston," Environment and Planning B, , vol. 46(2), pages 264-285, February.
    6. Natalia Distefano & Salvatore Leonardi & Nilda Georgina Liotta, 2023. "Walking for Sustainable Cities: Factors Affecting Users’ Willingness to Walk," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    7. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    8. Neatt, Kevin & Millward, Hugh & Spinney, Jamie, 2017. "Neighborhood walking densities: A multivariate analysis in Halifax, Canada," Journal of Transport Geography, Elsevier, vol. 61(C), pages 9-16.
    9. Bojing Liao & Yifan Xu & Xiang Li & Ji Li, 2022. "Association between Campus Walkability and Affective Walking Experience, and the Mediating Role of Walking Attitude," IJERPH, MDPI, vol. 19(21), pages 1-13, November.
    10. Calvin P Tribby & Harvey J Miller & Barbara B Brown & Carol M Werner & Ken R Smith, 2017. "Analyzing walking route choice through built environments using random forests and discrete choice techniques," Environment and Planning B, , vol. 44(6), pages 1145-1167, November.
    11. Delclòs-Alió, Xavier & Miralles-Guasch, Carme, 2017. "Suburban travelers pressed for time: Exploring the temporal implications of metropolitan commuting in Barcelona," Journal of Transport Geography, Elsevier, vol. 65(C), pages 165-174.
    12. De Vos, Jonas, 2018. "Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 261-274.
    13. Otsuka, Noriko & Wittowsky, Dirk & Damerau, Marlene & Gerten, Christian, 2021. "Walkability assessment for urban areas around railway stations along the Rhine-Alpine Corridor," Journal of Transport Geography, Elsevier, vol. 93(C).
    14. Rongrong Zhang & Song Liu & Ming Li & Xiong He & Chunshan Zhou, 2021. "The Effect of High-Density Built Environments on Elderly Individuals’ Physical Health: A Cross-Sectional Study in Guangzhou, China," IJERPH, MDPI, vol. 18(19), pages 1-22, September.
    15. Shima Hamidi & Somayeh Moazzeni, 2019. "Examining the Relationship between Urban Design Qualities and Walking Behavior: Empirical Evidence from Dallas, TX," Sustainability, MDPI, vol. 11(10), pages 1-14, May.
    16. François Sprumont & Ariane Scheffer & Geoffrey Caruso & Eric Cornelis & Francesco Viti, 2022. "Quantifying the Relation between Activity Pattern Complexity and Car Use Using a Partial Least Square Structural Equation Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    17. Arranz-López, Aldo & Soria-Lara, Julio A & López-Escolano, Carlos & Pueyo Campos, Ángel, 2017. "Retail Mobility Environments: A methodological framework for integrating retail activity and non-motorised accessibility in Zaragoza, Spain," Journal of Transport Geography, Elsevier, vol. 58(C), pages 92-103.
    18. Poklewski-Koziełł, Damian & Dudzic-Gyurkovich, Karolina & Duarte, Carlos Marmolejo, 2023. "Investigating urban form, and walkability measures in the new developments. The case study of Garnizon in Gdansk," Land Use Policy, Elsevier, vol. 125(C).
    19. Young-Jae Kim & Ayoung Woo, 2016. "What’s the Score? Walkable Environments and Subsidized Households," Sustainability, MDPI, vol. 8(4), pages 1-20, April.
    20. Joreintje Dingena Mackenbach & Edward Randal & Pengjun Zhao & Philippa Howden-Chapman, 2016. "The Influence of Urban Land-Use and Public Transport Facilities on Active Commuting in Wellington, New Zealand: Active Transport Forecasting Using the WILUTE Model," Sustainability, MDPI, vol. 8(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9089-:d:870863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.