IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i15p9029-d869731.html
   My bibliography  Save this article

Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity

Author

Listed:
  • Denise Boehnke

    (Division 4—Natural and Built Environment, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany)

  • Alice Krehl

    (Institute of Environmental Science and Geography, University Potsdam, 14476 Potsdam, Germany)

  • Kai Mörmann

    (Institute of Sustainable Management of Housing and Real Estate, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

  • Rebekka Volk

    (Institute for Industrial Production, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany)

  • Thomas Lützkendorf

    (Institute of Sustainable Management of Housing and Real Estate, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

  • Elias Naber

    (Institute for Industrial Production, Karlsruhe Institute of Technology, 76187 Karlsruhe, Germany)

  • Ronja Becker

    (Institute of Geography and Geoecology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany)

  • Stefan Norra

    (Institute of Environmental Science and Geography, University Potsdam, 14476 Potsdam, Germany)

Abstract

The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m 2 ] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed.

Suggested Citation

  • Denise Boehnke & Alice Krehl & Kai Mörmann & Rebekka Volk & Thomas Lützkendorf & Elias Naber & Ronja Becker & Stefan Norra, 2022. "Mapping Urban Green and Its Ecosystem Services at Microscale—A Methodological Approach for Climate Adaptation and Biodiversity," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9029-:d:869731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/15/9029/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/15/9029/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominati, Estelle & Patterson, Murray & Mackay, Alec, 2010. "A framework for classifying and quantifying the natural capital and ecosystem services of soils," Ecological Economics, Elsevier, vol. 69(9), pages 1858-1868, July.
    2. Cortinovis, Chiara & Geneletti, Davide, 2019. "A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    3. Julie Brunner & Paul Cozens, 2013. "'Where Have All the Trees Gone?' Urban Consolidation and the Demise of Urban Vegetation: A Case Study from Western Australia," Planning Practice & Research, Taylor & Francis Journals, vol. 28(2), pages 231-255, April.
    4. Marando, Federica & Salvatori, Elisabetta & Sebastiani, Alessandro & Fusaro, Lina & Manes, Fausto, 2019. "Regulating Ecosystem Services and Green Infrastructure: assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy," Ecological Modelling, Elsevier, vol. 392(C), pages 92-102.
    5. Stuart R. Gaffin & Cynthia Rosenzweig & Angela Y. Y. Kong, 2012. "Adapting to climate change through urban green infrastructure," Nature Climate Change, Nature, vol. 2(10), pages 704-704, October.
    6. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    7. Martina Artmann & Olaf Bastian & Karsten Grunewald, 2017. "Using the Concepts of Green Infrastructure and Ecosystem Services to Specify Leitbilder for Compact and Green Cities—The Example of the Landscape Plan of Dresden (Germany)," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    8. Karsten Grunewald & Benjamin Richter & Martin Behnisch, 2019. "Multi-Indicator Approach for Characterising Urban Green Space Provision at City and City-District Level in Germany," IJERPH, MDPI, vol. 16(13), pages 1-20, June.
    9. Bolund, Per & Hunhammar, Sven, 1999. "Ecosystem services in urban areas," Ecological Economics, Elsevier, vol. 29(2), pages 293-301, May.
    10. Elias Naber & Rebekka Volk & Kai Mörmann & Denise Boehnke & Thomas Lützkendorf & Frank Schultmann, 2022. "Namares—A Surface Inventory and Intervention Assessment Model for Urban Resource Management," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    11. McPhearson, Timon & Kremer, Peleg & Hamstead, Zoé A., 2013. "Mapping ecosystem services in New York City: Applying a social–ecological approach in urban vacant land," Ecosystem Services, Elsevier, vol. 5(C), pages 11-26.
    12. Tobias Scholz & Angela Hof & Thomas Schmitt, 2018. "Cooling Effects and Regulating Ecosystem Services Provided by Urban Trees—Novel Analysis Approaches Using Urban Tree Cadastre Data," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    13. Teodoro Semeraro & Aurelia Scarano & Riccardo Buccolieri & Angelo Santino & Eeva Aarrevaara, 2021. "Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits," Land, MDPI, vol. 10(2), pages 1-26, January.
    14. Klaus Eisenack & Susanne C. Moser & Esther Hoffmann & Richard J. T. Klein & Christoph Oberlack & Anna Pechan & Maja Rotter & Catrien J. A. M. Termeer, 2014. "Explaining and overcoming barriers to climate change adaptation," Nature Climate Change, Nature, vol. 4(10), pages 867-872, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rebekka Volk & Thomas Lützkendorf, 2023. "Editorial: Special Issue “Resource Management in Urban Districts—A Contribution to Sustainable Urban Development”," Sustainability, MDPI, vol. 15(6), pages 1-5, March.
    2. Itxaro Latasa & Angela Laurenz, 2023. "The Residual Spaces of Developmental Urbanism as Opportunity for Green Cities and Improvement of Human Wellbeing," Land, MDPI, vol. 12(4), pages 1-30, March.
    3. Gül Aslı Aksu & Şermin Tağıl & Nebiye Musaoğlu & Emel Seyrek Canatanoğlu & Adnan Uzun, 2022. "Landscape Ecological Evaluation of Cultural Patterns for the Istanbul Urban Landscape," Sustainability, MDPI, vol. 14(23), pages 1-26, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrycia Brzoska & Aiga Spāģe, 2020. "From City- to Site-Dimension: Assessing the Urban Ecosystem Services of Different Types of Green Infrastructure," Land, MDPI, vol. 9(5), pages 1-18, May.
    2. Francesca Vignoli & Claudia de Luca & Simona Tondelli, 2021. "A Spatial Ecosystem Services Assessment to Support Decision and Policy Making: The Case of the City of Bologna," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    3. Donatella Valente & María Victoria Marinelli & Erica Maria Lovello & Cosimo Gaspare Giannuzzi & Irene Petrosillo, 2022. "Fostering the Resiliency of Urban Landscape through the Sustainable Spatial Planning of Green Spaces," Land, MDPI, vol. 11(3), pages 1-13, March.
    4. Brzoska, P. & Grunewald, K. & Bastian, O., 2021. "A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts," Ecosystem Services, Elsevier, vol. 49(C).
    5. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    6. Dikman Maheng & Assela Pathirana & Chris Zevenbergen, 2021. "A Preliminary Study on the Impact of Landscape Pattern Changes Due to Urbanization: Case Study of Jakarta, Indonesia," Land, MDPI, vol. 10(2), pages 1-26, February.
    7. Dongwoo Lee & Kyushik Oh & Jungeun Suh, 2022. "Diagnosis and Prioritization of Vulnerable Areas of Urban Ecosystem Regulation Services," Land, MDPI, vol. 11(10), pages 1-22, October.
    8. Karsten Grunewald & Olaf Bastian ., 2017. "Special Issue: “Maintaining Ecosystem Services to Support Urban Needs”," Sustainability, MDPI, vol. 9(9), pages 1-9, September.
    9. Zuzana Drillet & Tze Kwan Fung & Rachel Ai Ting Leong & Uma Sachidhanandam & Peter Edwards & Daniel Richards, 2020. "Urban Vegetation Types are Not Perceived Equally in Providing Ecosystem Services and Disservices," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    10. Remme, Roy P. & Meacham, Megan & Pellowe, Kara E. & Andersson, Erik & Guerry, Anne D. & Janke, Benjamin & Liu, Lingling & Lonsdorf, Eric & Li, Meng & Mao, Yuanyuan & Nootenboom, Christopher & Wu, Tong, 2024. "Aligning nature-based solutions with ecosystem services in the urban century," Ecosystem Services, Elsevier, vol. 66(C).
    11. Veerkamp, Clara J. & Schipper, Aafke M. & Hedlund, Katarina & Lazarova, Tanya & Nordin, Amanda & Hanson, Helena I., 2021. "A review of studies assessing ecosystem services provided by urban green and blue infrastructure," Ecosystem Services, Elsevier, vol. 52(C).
    12. Nikodinoska, Natasha & Paletto, Alessandro & Pastorella, Fabio & Granvik, Madeleine & Franzese, Pier Paolo, 2018. "Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden)," Ecological Modelling, Elsevier, vol. 368(C), pages 411-424.
    13. Massoni, Emma Soy & Barton, David N. & Rusch, Graciela M. & Gundersen, Vegard, 2018. "Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces," Ecosystem Services, Elsevier, vol. 31(PC), pages 502-516.
    14. Dennis, Matthew & James, Philip, 2017. "Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level," Ecosystem Services, Elsevier, vol. 26(PA), pages 17-26.
    15. Vahid Amini Parsa & Esmail Salehi & Ahmad Reza Yavari & Peter M van Bodegom, 2019. "An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: A case study in Tabriz, Iran," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
    16. Brown, Melanie G. & Quinn, John E., 2018. "Zoning does not improve the availability of ecosystem services in urban watersheds. A case study from Upstate South Carolina, USA," Ecosystem Services, Elsevier, vol. 34(PB), pages 254-265.
    17. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    18. Peck, Megan & Khirfan, Luna, 2021. "Improving the validity and credibility of the sociocultural valuation of ecosystem services in Amman, Jordan," Ecological Economics, Elsevier, vol. 189(C).
    19. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    20. Jeroen Degerickx & Martin Hermy & Ben Somers, 2020. "Mapping Functional Urban Green Types Using High Resolution Remote Sensing Data," Sustainability, MDPI, vol. 12(5), pages 1-35, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:15:p:9029-:d:869731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.