IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8010-d852811.html
   My bibliography  Save this article

Sustainable Design of Temporary Buildings in Emergency Situations

Author

Listed:
  • Rossana Paparella

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy)

  • Mauro Caini

    (Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy)

Abstract

Unforeseen circumstances that occur anywhere in the world following natural disasters, humanitarian and health emergencies, armed conflicts, or in the presence of migratory flows, require adequate and immediate responses. This work aims to analyze the project requirements useful to realizing modular systems for residential, multifunctional, and hospital intended use, which, even if temporary, can ensure a high-performance standard in terms of comfort and energy efficiency, and at the same time guarantee the possibility of use in the widest possible range and in rapid execution times. The considered requirements have been those of settlement in the territory, energy efficiency, transportability, and re-usability. Temporary modular systems put in place with the abovementioned requirements are the basis of the design proposal; to realize this, they are made with dry technology to be reusable and energy-efficient. Furthermore, this enables the reduction of the minimum modules’ production and times of execution in applying both requirements of standardization and modular coordination. All these requirements also add to the ones relating to energy efficiency, transportability, and reusability, which are the pillars of the project for the achievement of performance above all in terms of standards and comfort levels as it is possible to find in the sustainable building of the living period.

Suggested Citation

  • Rossana Paparella & Mauro Caini, 2022. "Sustainable Design of Temporary Buildings in Emergency Situations," Sustainability, MDPI, vol. 14(13), pages 1-34, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8010-:d:852811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    2. Beungyong Park & Jinkyun Cho & Yongdae Jeong, 2019. "Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiranya Sritart & Hiroyuki Miyazaki & Sakiko Kanbara & Takashi Hara, 2020. "Methodology and Application of Spatial Vulnerability Assessment for Evacuation Shelters in Disaster Planning," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    2. Jie Zhou & Wenyi Liu & Yu Lin & Benyong Wei & Yaohui Liu, 2024. "The Evaluation and Comparison of Resilience for Shelters in Old and New Urban Districts: A Case Study in Kunming City, China," Sustainability, MDPI, vol. 16(7), pages 1-15, April.
    3. Anchal Patil & Vipulesh Shardeo & Ashish Dwivedi & Noor Ulain Rizvi & Sanjoy Kumar Paul, 2024. "A framework to evaluate the temporary hospital locations in wake of COVID-19 pandemic: implications to healthcare operations," Operations Management Research, Springer, vol. 17(2), pages 438-452, June.
    4. Slamet Setio Wigati & Bertha Maya Sopha & Anna Maria Sri Asih & Heri Sutanta, 2023. "Geographic Information System Based Suitable Temporary Shelter Location for Mount Merapi Eruption," Sustainability, MDPI, vol. 15(3), pages 1-26, January.
    5. Emerson Rico & Jomar Rabajante & Jerrold Tubay & Aileen Lapitan & Val Randolf Madrid, 2024. "A multi-objective site selection model for evacuation centers in Taguig City, Philippines," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8303-8321, July.
    6. S. M. Amin Hosseini & Rama Ghalambordezfooly & Albert de la Fuente, 2022. "Sustainability Model to Select Optimal Site Location for Temporary Housing Units: Combining GIS and the MIVES–Knapsack Model," Sustainability, MDPI, vol. 14(8), pages 1-23, April.
    7. Yunjia Ma & Sijia Chen & Kaiwen Zhang & Yumeng Yang, 2022. "Temporal and Spatial Pattern Evolution and Influencing Factors of the National Comprehensive Disaster-Reduction Demonstration Community in China," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    8. Salma Ommi & Milad Janalipour, 2022. "Selection of shelters after earthquake using probabilistic seismic aftershock hazard analysis and remote sensing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 345-363, August.
    9. Lei He & Ziang Xie, 2022. "Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
    10. Shaoqing Geng & Hanping Hou & Shaoguang Zhang, 2020. "Multi-Criteria Location Model of Emergency Shelters in Humanitarian Logistics," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    11. Anchal Patil & Jitender Madaan, 2024. "A Study on the Research Clusters in the Humanitarian Supply Chain Literature: A Systematic Review," Logistics, MDPI, vol. 8(4), pages 1-22, December.
    12. Erkan Celik, 2024. "Analyzing the Shelter Site Selection Criteria for Disaster Preparedness Using Best–Worst Method under Interval Type-2 Fuzzy Sets," Sustainability, MDPI, vol. 16(5), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8010-:d:852811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.