IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5561-d274663.html
   My bibliography  Save this article

Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters

Author

Listed:
  • Beungyong Park

    (Energy Division, KCL (Korea Conformity Laboratories), Jincheon 27872, Korea)

  • Jinkyun Cho

    (Department of Building and Plant Engineering, Hanbat National University, Daejeon 34158, Korea)

  • Yongdae Jeong

    (Energy Division, KCL (Korea Conformity Laboratories), Jincheon 27872, Korea)

Abstract

An investigation was conducted into temporary modular housing for use in disaster areas to assess the feasibility of energy independence. Flexible modular units have been proposed as a temporary housing solution in disaster areas, as they can be deployed in combination with energy units across a wide range of environments. A dynamic energy simulation was used to examine the heating/cooling requirements and the potential photovoltaic power generation of such modular housing in an East Asian climate. This was used to assess the potential for energy independence. The building performance was analyzed based on measurements of airtightness, insulation performance, and thermal bridge phenomena taken from mock-up modular housing. According to the wall assembly method, it was confirmed that the airtightness performance was poor. Further investigations explored the possibility of reducing the annual heating/cooling loads by improving the airtightness, which would contribute to greater energy independence. In general, the specific housing needs of different victim groups can easily be satisfied through the application of different modular unit combinations.

Suggested Citation

  • Beungyong Park & Jinkyun Cho & Yongdae Jeong, 2019. "Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5561-:d:274663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Zubair & Ahmed Bilal Awan & Abdullah Al-Ahmadi & Ahmed G. Abo-Khalil, 2018. "NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. Košir, Mitja & Iglič, Nataša & Kunič, Roman, 2018. "Optimisation of heating, cooling and lighting energy performance of modular buildings in respect to location’s climatic specifics," Renewable Energy, Elsevier, vol. 129(PA), pages 527-539.
    3. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    4. Hassan Saeed Khan & Muhammad Asif, 2017. "Impact of Green Roof and Orientation on the Energy Performance of Buildings: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    5. Joud Al Dakheel & Kheira Tabet Aoul, 2017. "Building Applications, Opportunities and Challenges of Active Shading Systems: A State-of-the-Art Review," Energies, MDPI, vol. 10(10), pages 1-32, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossana Paparella & Mauro Caini, 2022. "Sustainable Design of Temporary Buildings in Emergency Situations," Sustainability, MDPI, vol. 14(13), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Zubair & Ahmed Bilal Awan & Abdullah Al-Ahmadi & Ahmed G. Abo-Khalil, 2018. "NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device," Energies, MDPI, vol. 11(6), pages 1-20, May.
    2. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    3. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    4. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    5. Chris Turner & John Oyekan & Lampros K. Stergioulas, 2021. "Distributed Manufacturing: A New Digital Framework for Sustainable Modular Construction," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    6. Luigi Maffei & Antonio Ciervo & Achille Perrotta & Massimiliano Masullo & Antonio Rosato, 2023. "Innovative Energy-Efficient Prefabricated Movable Buildings for Smart/Co-Working: Performance Assessment upon Varying Building Configurations," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    7. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    8. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    9. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    10. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    11. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    12. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    13. Qingwen, Wang & XiaoHui, Chu & Chao, Yu, 2024. "Modeling of heat gain through green roofs utilizing artificial intelligence techniques," Energy, Elsevier, vol. 303(C).
    14. Dietz, Annelore & Vera, Sergio & Bustamante, Waldo & Flamant, Gilles, 2020. "Multi-objective optimization to balance thermal comfort and energy use in a mining camp located in the Andes Mountains at high altitude," Energy, Elsevier, vol. 199(C).
    15. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    16. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Min-Hwi Kim & Deuk-Won Kim & Dong-Won Lee, 2021. "Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems," Energies, MDPI, vol. 14(21), pages 1-24, November.
    19. Zhi Li & Akira Yano & Marco Cossu & Hidekazu Yoshioka & Ichiro Kita & Yasuomi Ibaraki, 2018. "Electrical Energy Producing Greenhouse Shading System with a Semi-Transparent Photovoltaic Blind Based on Micro-Spherical Solar Cells," Energies, MDPI, vol. 11(7), pages 1-23, June.
    20. Roope Husgafvel & Daishi Sakaguchi, 2021. "Circular Economy Development in the Construction Sector in Japan," World, MDPI, vol. 3(1), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5561-:d:274663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.