IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4401-d788045.html
   My bibliography  Save this article

Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model

Author

Listed:
  • Lei He

    (Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Ministry of Education), College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

  • Ziang Xie

    (Key Laboratory of Ecology and Energy-Saving Study of Dense Habitat (Ministry of Education), College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

Abstract

Recently, global natural disasters have occurred frequently and caused serious damage. As an important urban space resource and public service facility, the reasonable planning and layout optimization of shelters is very important to reduce the disaster loss and improve the sustainable development of cities. Based on the review of location theory and models for shelter site selection, this study constructs a bi-level multi-objective location-allocation model, an accessibility, economy, and efficiency (AEE) model, based on sequential decision logic to maximize the economic sustainability and social utility. The model comprehensively considers factors such as the level of decision-making, the utilization efficiency, and capacity constraints of shelters. The gravity model is introduced to simulate the decision-making behavior of evacuees. A calculation example and its solution prove the high practicability and operability of the AEE model in an actual shelter site selection and construction investment, which can achieve the global optimization of evacuation time and the maximization of the use efficiency of the shelters under the financial constraints. It provides a scientific and effective decision-making method for the multi-objective location optimization problem of shelters.

Suggested Citation

  • Lei He & Ziang Xie, 2022. "Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4401-:d:788045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adenso-Díaz, B. & Rodríguez, F., 1997. "A simple search heuristic for the MCLP: Application to the location of ambulance bases in a rural region," Omega, Elsevier, vol. 25(2), pages 181-187, April.
    2. Trevor Hale & Christopher Moberg, 2003. "Location Science Research: A Review," Annals of Operations Research, Springer, vol. 123(1), pages 21-35, October.
    3. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    4. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    5. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    6. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    7. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    8. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    9. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    10. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    11. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Siqi & Bai, Xuejie & Li, Yongli & Xin, Hening, 2023. "Model and solution of sustainable bi-level emergency commodity allocation based on type-2 fuzzy theory," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    2. Maimaitizunong Keyimu & Zulihuma Abulikemu & Aishanjiang Abudurexiti, 2024. "Quantitative Evaluation of the Equity of Public Service Facility Layout in Urumqi City for Sustainable Development," Sustainability, MDPI, vol. 16(12), pages 1-15, June.
    3. Feiyue Wang & Ziling Xie & Zhongwei Pei & Dingli Liu, 2022. "Emergency Relief Chain for Natural Disaster Response Based on Government-Enterprise Coordination," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    4. Shaoren Wang & Yenchun Jim Wu & Ruiting Li, 2022. "An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies," IJERPH, MDPI, vol. 19(15), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    2. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    3. Xiujuan Zhao & Wei Xu & Yunjia Ma & Fuyu Hu, 2015. "Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
    4. Yijun Shi & Guofang Zhai & Lihua Xu & Quan Zhu & Jinyang Deng, 2019. "Planning Emergency Shelters for Urban Disasters: A Multi-Level Location–Allocation Modeling Approach," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    5. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    6. Reza Asriandi Ekaputra & Changkye Lee & Seong-Hoon Kee & Jurng-Jae Yee, 2022. "Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    7. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    8. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    9. Jianfeng Lu & Qiang Yang, 2022. "Location Optimization of Emergency Station for Dangerous Goods Accidents Considering Risk," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    10. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    11. Xiujuan Zhao & Jianguo Chen & Wei Xu & Shiyan Lou & Peng Du & Hongyong Yuan & Kuai Peng Ip, 2019. "A Three-Stage Hierarchical Model for An Earthquake Shelter Location-Allocation Problem: Case Study of Chaoyang District, Beijing, China," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    12. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    13. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    14. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    15. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    16. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    17. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    18. Chen, Liang & Chen, Sheng-Jie & Chen, Wei-Kun & Dai, Yu-Hong & Quan, Tao & Chen, Juan, 2023. "Efficient presolving methods for solving maximal covering and partial set covering location problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 73-87.
    19. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    20. Zhu Jianming, 2014. "Non-linear Integer Programming Model and Algorithms for Connected p-facility Location Problem," Journal of Systems Science and Information, De Gruyter, vol. 2(5), pages 451-460, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4401-:d:788045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.