IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7771-d416414.html
   My bibliography  Save this article

A Resonant Hybrid DC Circuit Breaker for Multi-Terminal HVDC Systems

Author

Listed:
  • Ryo Miyara

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213, Japan)

  • Akito Nakadomari

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213, Japan)

  • Hidehito Matayoshi

    (Osaka Institute of Technology, Osaka 530-8568, Japan)

  • Hiroshi Takahashi

    (Fuji Electric Co., Ltd., Tokyo 141-0032, Japan)

  • Ashraf M. Hemeida

    (Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 51528, Egypt)

  • Tomonobu Senjyu

    (Faculty of Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami, Okinawa 903-0213, Japan)

Abstract

High-voltage direct current (DC) transmission systems and multi-terminal direct current transmission systems are attracting attention for expanding the grid to promote introduction of renewable energy. Fault clearing in DC systems is difficult because there is no zero point of current. Hybrid circuit breakers are suitable for fault clearing in DC systems. Conventional hybrid circuit breakers have a hard-switching path that damages the switch. Hard switching damages the device and produces emissions due to harmonic noise. A novel resonant hybrid DC circuit breaker is proposed in this paper. The proposed circuit breaker reduces the damage to the switching device using soft switching due to the current zero point. The proposed circuit breaker is compared with conventional hybrid circuit breakers using numerical simulations. Interruption times and switching types of circuit breakers were compared. The simulation results of the fault clearing characteristics of the proposed breakers show that the proposed breakers have sufficient performance and are capable of stable reconnections in multi-terminal direct current transmission systems.

Suggested Citation

  • Ryo Miyara & Akito Nakadomari & Hidehito Matayoshi & Hiroshi Takahashi & Ashraf M. Hemeida & Tomonobu Senjyu, 2020. "A Resonant Hybrid DC Circuit Breaker for Multi-Terminal HVDC Systems," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7771-:d:416414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7771/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijun Xie & Fan Cheng & Jing Wu, 2022. "Control Strategy for Offshore Wind Farms with DC Collection System Based on Series-Connected Diode Rectifier," Sustainability, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7771-:d:416414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.