IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7799-d848645.html
   My bibliography  Save this article

Sustaining the Well-Being of Wearable Technology Users: Leveraging SEM-Based IPMA and VIKOR Analyses to Gain Deeper Insights

Author

Listed:
  • Huan-Ming Chuang

    (Department of Information Management, National Yunlin University of Science and Technology, 123, University Rd., Section 3, Douliou 64002, Yunlin, Taiwan
    These authors contributed equally to this work.)

  • Chien-I Chen

    (Department of Information Management, National Yunlin University of Science and Technology, 123, University Rd., Section 3, Douliou 64002, Yunlin, Taiwan
    These authors contributed equally to this work.)

Abstract

Wearable technology is a self-contained computer system that can record muscular activity data. Wearable technologies are rapidly evolving that have the potential to enhance the well-being of healthier lives. However, wearable technologies are finding slow adoption rates relative to mainstream technologies such as smartphones. Consequently, both designers and manufacturers are increasingly interested in key decision factors that influence the acceptance of these technologies. As discussions relating to wearable technologies are often approached from different perspectives, a general framework featuring not only a synthesis of general acceptance issues but also with consideration of contingent factors would be a useful research undertaking. Furthermore, wearable technology acceptance studies are insufficient to supplement practical implementation and promotion issues. In this regard, methods for further analysis of results from structural equation modeling (SEM), such as importance-performance map analysis (IPMA) and VIKOR for multi-criteria optimization and compromise solution, can be used to derive greater insights. The primary research findings are extensively discussed, and practical promotion strategies for wearable technologies for health care are suggested.

Suggested Citation

  • Huan-Ming Chuang & Chien-I Chen, 2022. "Sustaining the Well-Being of Wearable Technology Users: Leveraging SEM-Based IPMA and VIKOR Analyses to Gain Deeper Insights," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7799-:d:848645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahdokht Kalantari & Philipp Rauschnabel, 2018. "Exploring the Early Adopters of Augmented Reality Smart Glasses: The Case of Microsoft HoloLens," Progress in IS, in: Timothy Jung & M. Claudia tom Dieck (ed.), Augmented Reality and Virtual Reality, pages 229-245, Springer.
    2. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    3. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    4. Viswanath Venkatesh & Fred D. Davis, 2000. "A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies," Management Science, INFORMS, vol. 46(2), pages 186-204, February.
    5. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2007. "Extended VIKOR method in comparison with outranking methods," European Journal of Operational Research, Elsevier, vol. 178(2), pages 514-529, April.
    6. Marko Sarstedt & Erik Mooi, 2019. "A Concise Guide to Market Research," Springer Texts in Business and Economics, Springer, edition 3, number 978-3-662-56707-4, June.
    7. Julian K. Ayeh & Norman Au & Rob Law, 2013. "Towards an Understanding of Online Travellers’ Acceptance of Consumer-Generated Media for Travel Planning: Integrating Technology Acceptance and Source Credibility Factors," Springer Books, in: Lorenzo Cantoni & Zheng (Phil) Xiang (ed.), Information and Communication Technologies in Tourism 2013, edition 127, pages 254-267, Springer.
    8. Gary C. Moore & Izak Benbasat, 1991. "Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation," Information Systems Research, INFORMS, vol. 2(3), pages 192-222, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haseli, Gholamreza & Yaran Ögel, İlkin & Ecer, Fatih & Hajiaghaei-Keshteli, Mostafa, 2023. "Luxury in female technology (FemTech): Selection of smart jewelry for women through BCM-MARCOS group decision-making framework with fuzzy ZE-numbers," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Zhigang Wang & Dan Fang & Xintao Liu & Lei Zhang & Hongyan Duan & Chao Wang & Kai Guo, 2023. "Consumer Acceptance of Sports Wearables: The Role of Products Attributes," SAGE Open, , vol. 13(3), pages 21582440231, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Tsang Lu & Gwo-Hshiung Tzeng & Hilary Cheng & Chih-Cheng Hsu, 2015. "Exploring mobile banking services for user behavior in intention adoption: using new hybrid MADM model," Service Business, Springer;Pan-Pacific Business Association, vol. 9(3), pages 541-565, September.
    2. Paul Juinn Bing Tan, 2013. "Applying the UTAUT to Understand Factors Affecting the Use of English E-Learning Websites in Taiwan," SAGE Open, , vol. 3(4), pages 21582440135, October.
    3. Wang, Guoqiang & Tan, Garry Wei-Han & Yuan, Yunpeng & Ooi, Keng-Boon & Dwivedi, Yogesh K., 2022. "Revisiting TAM2 in behavioral targeting advertising: A deep learning-based dual-stage SEM-ANN analysis," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    4. Riffat Ara Zannat Tama & Md Mahmudul Hoque & Ying Liu & Mohammad Jahangir Alam & Mark Yu, 2023. "An Application of Partial Least Squares Structural Equation Modeling (PLS-SEM) to Examining Farmers’ Behavioral Attitude and Intention towards Conservation Agriculture in Bangladesh," Agriculture, MDPI, vol. 13(2), pages 1-22, February.
    5. Sanjeev Verma, 2015. "Harnessing the Benefit of Social Networking Sites for Intentional Social Action: Determinants and Challenges," Vision, , vol. 19(2), pages 104-111, June.
    6. Queiroz, Maciel M. & Fosso Wamba, Samuel, 2019. "Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA," International Journal of Information Management, Elsevier, vol. 46(C), pages 70-82.
    7. Sarv Devaraj & Ming Fan & Rajiv Kohli, 2002. "Antecedents of B2C Channel Satisfaction and Preference: Validating e-Commerce Metrics," Information Systems Research, INFORMS, vol. 13(3), pages 316-333, September.
    8. Gansser, Oliver Alexander & Reich, Christina Stefanie, 2021. "A new acceptance model for artificial intelligence with extensions to UTAUT2: An empirical study in three segments of application," Technology in Society, Elsevier, vol. 65(C).
    9. repec:zbw:bofrdp:2006_032 is not listed on IDEAS
    10. Guych Nuryyev & Yu-Ping Wang & Jennet Achyldurdyyeva & Bih-Shiaw Jaw & Yi-Shien Yeh & Hsien-Tang Lin & Li-Fan Wu, 2020. "Blockchain Technology Adoption Behavior and Sustainability of the Business in Tourism and Hospitality SMEs: An Empirical Study," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    11. Donmez, Birsen & Matson, Zannah & Savan, Beth & Farahani, Ellie & Photiadis, David & Dafoe, Joanna, 2014. "Interruption management and office norms: Technology adoption lessons from a product commercialization study," International Journal of Information Management, Elsevier, vol. 34(6), pages 741-750.
    12. Attié, Elodie & Meyer-Waarden, Lars, 2022. "The acceptance and usage of smart connected objects according to adoption stages: an enhanced technology acceptance model integrating the diffusion of innovation, uses and gratification and privacy ca," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Viswanath Venkatesh, 2000. "Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model," Information Systems Research, INFORMS, vol. 11(4), pages 342-365, December.
    14. Gao, Tao (Tony) & Rohm, Andrew J. & Sultan, Fareena & Pagani, Margherita, 2013. "Consumers un-tethered: A three-market empirical study of consumers' mobile marketing acceptance," Journal of Business Research, Elsevier, vol. 66(12), pages 2536-2544.
    15. Nuray Cakirli Akyüz & Ludwig Theuvsen, 2020. "The Impact of Behavioral Drivers on Adoption of Sustainable Agricultural Practices: The Case of Organic Farming in Turkey," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    16. Liébana-Cabanillas, Francisco & Marinkovic, Veljko & Ramos de Luna, Iviane & Kalinic, Zoran, 2018. "Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 117-130.
    17. Chen Wei, 2021. "The influence of Consumers’ Purchase intention on Smart Wearable Device: A study of Consumers in East China," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 46-72.
    18. Simarpreet Kaur & Sangeeta Arora, 2023. "Understanding customers’ usage behavior towards online banking services: an integrated risk–benefit framework," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 28(1), pages 74-98, March.
    19. Herbjørn Nysveen & Per Egil Pedersen, 2016. "Consumer adoption of RFID-enabled services. Applying an extended UTAUT model," Information Systems Frontiers, Springer, vol. 18(2), pages 293-314, April.
    20. Juin-Hao Ho & Gwo-Guang Lee & Ming-Tsang Lu, 2020. "Exploring the Implementation of a Legal AI Bot for Sustainable Development in Legal Advisory Institutions," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    21. Maria Sabbagh & Luciano Gutierrez, 2022. "Micro-Irrigation Technology Adoption in the Bekaa Valley of Lebanon: A Behavioural Model," Sustainability, MDPI, vol. 14(13), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7799-:d:848645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.