IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p345-d713700.html
   My bibliography  Save this article

The Differential Impact of Various Injection Pressures on the Exergy of a Diesel Engine Using Biodiesel-Diesel Fuel Blends

Author

Listed:
  • Mostafa Kiani Deh Kiani

    (Biosystem Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz 61357, Iran)

  • Sajad Rostami

    (Biosystem Engineering Department, Shahrekord University, Shahrekord 34141, Iran)

  • Gholamhassan Najafi

    (Mechanics of Biosystem Engineering, Tarbiat Modares University, Tehran 14115, Iran)

  • Mohamed Mazlan

    (Faculty of Bio Engineering and Technology, Universiti Malaysia Kelantan, Jeli 17600, Malaysia)

Abstract

Contrary to energy, exergy may be destroyed due to irreversibility. Exergy analysis can be used to reveal the location, and amount of energy losses of engines. Despite the importance of the exergy analysis, there is a lack of information in this area, especially when the engine is fueled with biodiesel–diesel fuel blends under various injection operating parameters. Thus, in this research, the exergy analysis of a direct-injection diesel engine using biodiesel–diesel fuel blends was performed. The fuel blends (B0, B20, B40, and B100) were injected into cylinders at pressures of 200 and 215 bars. Moreover, the simulation of exergy and energy analyses was done by homemade code. The simulation model was verified by compression of experimental and simulation in-cylinder pressure data. The results showed there was good agreement between simulation data and experimental ones. Results indicated that the highest level of in-cylinder pressure at injection pressure of 215 bars is more than that of 200 bars. Moreover, by increasing the percentage of biodiesel, the heat transfer exergy, irreversibility, burnt fuel, and exergy indicator decreased, but the ratio of these exergy parameters (except for heat transfer exergy) to fuel exergy increased. These ratios increased from 46 to 50.54% for work transfer exergy, 16.57 to 17.97% for irreversibility, and decreased from 16 to 15.49% for heat transfer exergy. In addition, these ratios at 215 bars are higher than at 200 bars for all fuels. However, with increasing the injection pressure and biodiesel concentration in fuel blends, the exergy and energy efficiencies increased.

Suggested Citation

  • Mostafa Kiani Deh Kiani & Sajad Rostami & Gholamhassan Najafi & Mohamed Mazlan, 2021. "The Differential Impact of Various Injection Pressures on the Exergy of a Diesel Engine Using Biodiesel-Diesel Fuel Blends," Sustainability, MDPI, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:345-:d:713700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gharehghani, Ayatallah & Mirsalim, Mostafa & Hosseini, Reza, 2017. "Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission," Renewable Energy, Elsevier, vol. 101(C), pages 930-936.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaiswal, Krishna Kumar & Dutta, Swapnamoy & Banerjee, Ishita & Jaiswal, Km Smriti & Renuka, Nirmal & Ratha, Sachitra Kumar & Jaiswal, Amit K., 2024. "Valorization of fish processing industry waste for biodiesel production: Opportunities, challenges, and technological perspectives," Renewable Energy, Elsevier, vol. 220(C).
    2. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    3. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    4. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2019. "Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend," Renewable Energy, Elsevier, vol. 133(C), pages 216-232.
    5. Marín-Suárez, Marta & Méndez-Mateos, David & Guadix, Antonio & Guadix, Emilia M., 2019. "Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel," Renewable Energy, Elsevier, vol. 140(C), pages 1-8.
    6. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    7. Sathish, T. & Ağbulut, Ümit & Ubaidullah, Mohd & Saravanan, R. & Giri, Jayant & Shaikh, Shoyebmohamad F., 2024. "Waste to fuel: A detailed combustion, performance, and emission characteristics of a CI engine fuelled with sustainable fish waste management augmentation with alcohols and nanoparticles," Energy, Elsevier, vol. 299(C).
    8. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, R. & Ebadi, M.T. & Yusaf, Talal, 2018. "Novel environmentally friendly fuel: The effects of nanographene oxide additives on the performance and emission characteristics of diesel engines fuelled with Ailanthus altissima biodiesel," Renewable Energy, Elsevier, vol. 125(C), pages 283-294.
    9. Ching-Velasquez, Jonny & Fernández-Lafuente, Roberto & Rodrigues, Rafael C. & Plata, Vladimir & Rosales-Quintero, Arnulfo & Torrestiana-Sánchez, Beatriz & Tacias-Pascacio, Veymar G., 2020. "Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis," Renewable Energy, Elsevier, vol. 153(C), pages 1346-1354.
    10. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    11. Márcio Carvalho & Felipe Torres & Vitor Ferreira & Júlio Silva & Jorge Martins & Ednildo Torres, 2020. "Effects of Diethyl Ether Introduction in Emissions and Performance of a Diesel Engine Fueled with Biodiesel-Ethanol Blends," Energies, MDPI, vol. 13(15), pages 1-14, July.
    12. Josef Maroušek & Anna Maroušková, 2021. "Economic Considerations on Nutrient Utilization in Wastewater Management," Energies, MDPI, vol. 14(12), pages 1-16, June.
    13. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    14. Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
    15. Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.
    16. Munimathan Arunkumar & Vinayagam Mohanavel & Asif Afzal & Thanikodi Sathish & Manickam Ravichandran & Sher Afghan Khan & Nur Azam Abdullah & Muhammad Hanafi Bin Azami & Mohammad Asif, 2021. "A Study on Performance and Emission Characteristics of Diesel Engine Using Ricinus Communis (Castor Oil) Ethyl Esters," Energies, MDPI, vol. 14(14), pages 1-17, July.
    17. Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.
    18. Y.H. Teoh & K.H. Yu & H.G. How & H.-T. Nguyen, 2019. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends," Energies, MDPI, vol. 12(10), pages 1-17, May.
    19. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    20. Sathish, T. & Ağbulut, Ümit & George, Santhi M. & Ramesh, K. & Saravanan, R. & Roberts, Kenneth L. & Sharma, Prabhakar & Asif, Mohammad & Hoang, Anh Tuan, 2023. "Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:345-:d:713700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.