IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5146-d548773.html
   My bibliography  Save this article

Vehicle Lane-Changing Safety Pre-Warning Model under the Environment of the Vehicle Networking

Author

Listed:
  • Qiang Luo

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

  • Xiaodong Zang

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

  • Xu Cai

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

  • Huawei Gong

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

  • Jie Yuan

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

  • Junheng Yang

    (School of Civil Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract

Lane-changing behavior is one of the most common driving behaviors while driving. Due to the complexity of its operation, vehicle collision accidents are prone to occur when changing lanes. Under the environment of vehicle networking, drivers can obtain more accurate traffic information in time, which can be of great help in terms of improving lane-changing safety. This paper analyzes the core factors that affect the safety of vehicles changing lanes, establishes the weight model of influencing factors of lane-changing behavior using the analytic hierarchy process (AHP), and obtains the calculation method of lane-changing behavior factors (LCBFs). Based on the fuzzy reasoning theory, the headway between the lane-changing vehicle and adjacent vehicles in the target lane was examined, and fuzzy logic lane-changing models were established for both situations (i.e., change to the left and change to the right lane). The fuzzy logic lane-changing models were tested via simulation experiments, and the test results showed that the models have a better warning effect on lane changing (LCBF = 1.5), with an accuracy of more than 90%. Thus, the established model in this paper can provide theoretical support for safety warnings when changing lanes and theoretical support for the sustainable development of transportation safety.

Suggested Citation

  • Qiang Luo & Xiaodong Zang & Xu Cai & Huawei Gong & Jie Yuan & Junheng Yang, 2021. "Vehicle Lane-Changing Safety Pre-Warning Model under the Environment of the Vehicle Networking," Sustainability, MDPI, vol. 13(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5146-:d:548773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5146/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5146/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinqiang Chen & Jinquan Lu & Jiansen Zhao & Zhijian Qu & Yongsheng Yang & Jiangfeng Xian, 2020. "Traffic Flow Prediction at Varied Time Scales via Ensemble Empirical Mode Decomposition and Artificial Neural Network," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    2. Qiang Luo & Xiaodong Zang & Jie Yuan & Xinqiang Chen & Junheng Yang & Shubo Wu, 2020. "Research of Vehicle Rear-End Collision Model considering Multiple Factors," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, April.
    3. Danish Farooq & Janos Juhasz, 2019. "Simulation-Based Analysis of the Effect of Significant Traffic Parameters on Lane Changing for Driving Logic “Cautious” on a Freeway," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    4. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    5. Quantao Yang & Feng Lu & Jingsheng Wang & Dan Zhao & Lijie Yu, 2020. "Analysis of the Insertion Angle of Lane-Changing Vehicles in Nearly Saturated Fast Road Segments," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    6. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
    7. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    8. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    9. Pierfrancesco Fiore & Giuseppe Donnarumma & Carmelo Falce & Emanuela D’Andria & Claudia Sicignano, 2020. "An AHP-Based Methodology for Decision Support in Integrated Interventions in School Buildings," Sustainability, MDPI, vol. 12(23), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ting & Zhang, Zhishun & Wu, Xingqi & Qi, Long & Han, Yi, 2021. "Recognition of lane-changing behaviour with machine learning methods at freeway off-ramps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    2. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    3. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    5. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    6. Cailou Jiang & Ying Zhang & Maoliang Bu & Weishu Liu, 2018. "The Effectiveness of Government Subsidies on Manufacturing Innovation: Evidence from the New Energy Vehicle Industry in China," Sustainability, MDPI, vol. 10(6), pages 1-11, May.
    7. Guoqiang Zhang & Yanmei Xu & Juan Zhang, 2016. "Consumer-Oriented Policy towards Diffusion of Electric Vehicles: City-Level Evidence from China," Sustainability, MDPI, vol. 8(12), pages 1-16, December.
    8. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    9. Xingping Zhang & Jian Xie & Rao Rao & Yanni Liang, 2014. "Policy Incentives for the Adoption of Electric Vehicles across Countries," Sustainability, MDPI, vol. 6(11), pages 1-23, November.
    10. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    11. Hailin Zheng & Qinyou Hu & Chun Yang & Jinhai Chen & Qiang Mei, 2021. "Transmission Path Tracking of Maritime COVID-19 Pandemic via Ship Sailing Pattern Mining," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    12. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    13. Zhang, Wei & Yang, Jiakuan & Wu, Xu & Hu, Yuchen & Yu, Wenhao & Wang, Junxiong & Dong, Jinxin & Li, Mingyang & Liang, Sha & Hu, Jingping & Kumar, R. Vasant, 2016. "A critical review on secondary lead recycling technology and its prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 108-122.
    14. Yunna Wu & Chao Xie & Chuanbo Xu & Fang Li, 2017. "A Decision Framework for Electric Vehicle Charging Station Site Selection for Residential Communities under an Intuitionistic Fuzzy Environment: A Case of Beijing," Energies, MDPI, vol. 10(9), pages 1-25, August.
    15. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    16. Zhai, Linbo & Yang, Yong & Song, Shudian & Ma, Shuyue & Zhu, Xiumin & Yang, Feng, 2021. "Self-supervision Spatiotemporal Part-Whole Convolutional Neural Network for Traffic Prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    17. Wenhui Zhang & Tuo Liu & Jing Yi, 2022. "Exploring the Spatiotemporal Characteristics and Causes of Rear-End Collisions on Urban Roadways," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    18. Espadaler-Clapés, Jasso & Barmpounakis, Emmanouil & Geroliminis, Nikolas, 2023. "Empirical investigation of lane usage, lane changing and lane choice phenomena in a multimodal urban arterial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    19. He, Jia & Huang, Hai-Jun & Yang, Hai & Tang, Tie-Qiao, 2017. "An electric vehicle driving behavior model in the traffic system with a wireless charging lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 119-126.
    20. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5146-:d:548773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.