IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4298-d534880.html
   My bibliography  Save this article

Quantifying Environmental Burdens of Plasters Based on Natural vs. Flue Gas Desulfurization (FGD) Gypsum

Author

Listed:
  • Edyta Baran

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Sebastian Czernik

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Mariusz Hynowski

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Bartosz Michałowski

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

  • Michał Piasecki

    (Building Research Institute, 1, Filtrowa St., 00-611 Warsaw, Poland)

  • Justyna Tomaszewska

    (Building Research Institute, 1, Filtrowa St., 00-611 Warsaw, Poland)

  • Jacek Michalak

    (Research and Development Center, Atlas sp. z o.o., 2, Kilinskiego St., 91-421 Lodz, Poland)

Abstract

The ongoing global climate change and the associated environmental degradation pose a threat to Europe and the rest of the world. Raw materials and energy are required to produce building materials, which are used for construction purposes. Resulting buildings and structures generate waste during construction, operation, and demolition, and they emit potentially harmful substances. Thus, the key to achieving climate goals is to support low-emission materials and technologies in the construction sector, significantly impacting the environment. In the European Union, building materials are not yet subject to mandatory sustainability assessment during the assessment and verification of constancy of performance (AVCP). Objective evaluation of construction materials’ environmental impact requires it to be carried out based on production data on an industrial scale. This article presents the environmental impact of premixed gypsum-based plasters, commonly used in modern construction. Nine environmental indicators (global warming potential (GWP), depletion potential of the stratospheric ozone layer (ODP), acidification potential (AP), eutrophication potential (EP), formation potential of tropospheric ozone (POCP), abiotic depletion potential (ADP)-elements, ADP-fossil fuels, renewable primary energy resources (PERT), and nonrenewable primary energy resources (PERNT)) of premixed gypsum plasters based on natural and flue gas desulfurization (FGD) gypsum were estimated and discussed. Knowledge of the construction products’ environmental impact is fundamental for creating reliable databases. AVCP of construction materials in the future will use the data collected during the voluntary environmental impact evaluation.

Suggested Citation

  • Edyta Baran & Sebastian Czernik & Mariusz Hynowski & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2021. "Quantifying Environmental Burdens of Plasters Based on Natural vs. Flue Gas Desulfurization (FGD) Gypsum," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4298-:d:534880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christine Meschede, 2020. "The Sustainable Development Goals in Scientific Literature: A Bibliometric Overview at the Meta-Level," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    2. G. P. Peters & R. M. Andrew & J. G. Canadell & P. Friedlingstein & R. B. Jackson & J. I. Korsbakken & C. Quéré & A. Peregon, 2020. "Carbon dioxide emissions continue to grow amidst slowly emerging climate policies," Nature Climate Change, Nature, vol. 10(1), pages 3-6, January.
    3. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    4. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    5. Bruno Menezes Galindro & Sebastian Welling & Niki Bey & Stig Irving Olsen & Sebastião Roberto Soares & Sven‐Olof Ryding, 2020. "Making use of life cycle assessment and environmental product declarations: A survey with practitioners," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 965-975, October.
    6. Umberto Berardi, 2012. "Sustainability Assessment in the Construction Sector: Rating Systems and Rated Buildings," Sustainable Development, John Wiley & Sons, Ltd., vol. 20(6), pages 411-424, November.
    7. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    2. Jacek Michalak, 2021. "External Thermal Insulation Composite Systems (ETICS) from Industry and Academia Perspective," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    3. Sebastian Czernik & Marta Marcinek & Bartosz Michałowski & Michał Piasecki & Justyna Tomaszewska & Jacek Michalak, 2020. "Environmental Footprint of Cementitious Adhesives—Components of ETICS," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    4. George C. Efthimiou & Panos Kalimeris & Spyros Andronopoulos & John G. Bartzis, 2018. "Statistical Projection of Material Intensity: Evidence from the Global Economy and 107 Countries," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1465-1472, December.
    5. Ayomikun Bello & Anastasia Ivanova & Alexey Cheremisin, 2023. "A Comprehensive Review of the Role of CO 2 Foam EOR in the Reduction of Carbon Footprint in the Petroleum Industry," Energies, MDPI, vol. 16(3), pages 1-20, January.
    6. Viktoria Mannheim & Weronika Kruszelnicka, 2022. "Energy-Model and Life Cycle-Model for Grinding Processes of Limestone Products," Energies, MDPI, vol. 15(10), pages 1-20, May.
    7. Excell, Lauren E. & Jain, Rishee K., 2024. "Examining the impact of energy efficiency retrofits and vegetation on energy performance of institutional buildings: An equity-driven analysis," Applied Energy, Elsevier, vol. 357(C).
    8. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    9. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    10. Ragnheiður Bogadóttir, 2020. "The Social Metabolism of Quiet Sustainability in the Faroe Islands," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    11. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    12. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    13. Mohammad S. M. Almulhim & Dexter V. L. Hunt & Chris D. F. Rogers, 2020. "A Resilience and Environmentally Sustainable Assessment Framework (RESAF) for Domestic Building Materials in Saudi Arabia," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    14. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    15. Zengzeng Fan & Yuanyang Wang & Yanchao Feng, 2021. "Ecological Livability Assessment of Urban Agglomerations in Guangdong-Hong Kong-Macao Greater Bay Area," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    16. Azimi, Mohammad Naim, 2016. "An economic growth model: Evaluating the interaction of market consumption with GDP growth rate in Afghanistan," MPRA Paper 69517, University Library of Munich, Germany, revised 11 Jan 2016.
    17. Chandratilake, S.R. & Dias, W.P.S., 2013. "Sustainability rating systems for buildings: Comparisons and correlations," Energy, Elsevier, vol. 59(C), pages 22-28.
    18. Kander, Astrid & Warde, Paul & Teives Henriques, Sofia & Nielsen, Hana & Kulionis, Viktoras & Hagen, Sven, 2017. "International Trade and Energy Intensity During European Industrialization, 1870–1935," Ecological Economics, Elsevier, vol. 139(C), pages 33-44.
    19. Ole Øiene Smedegård & Thomas Jonsson & Bjørn Aas & Jørn Stene & Laurent Georges & Salvatore Carlucci, 2021. "The Implementation of Multiple Linear Regression for Swimming Pool Facilities: Case Study at Jøa, Norway," Energies, MDPI, vol. 14(16), pages 1-24, August.
    20. Cordier, Mateo & Uehara, Takuro & Baztan, Juan & Jorgensen, Bethany & Yan, Huijie, 2021. "Plastic pollution and economic growth: The influence of corruption and lack of education," Ecological Economics, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4298-:d:534880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.