IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4115-d531629.html
   My bibliography  Save this article

Volumetric Quantification of Flash Flood Using Microwave Data on a Watershed Scale in Arid Environments, Saudi Arabia

Author

Listed:
  • Jaka Budiman

    (Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Geo-Engineering Division, PT Freeport Indonesia, Jakarta 12940, Indonesia)

  • Jarbou Bahrawi

    (Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Asep Hidayatulloh

    (Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Mansour Almazroui

    (Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia)

  • Mohamed Elhag

    (Department of Hydrology and Water Resources Management, Faculty of Meteorology, Environment & Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Science (CAS), Beijing 100094, China
    Department of Applied Geosciences, Faculty of Science, German University of Technology in Oman, Muscat 1816, Oman)

Abstract

Actual flood mapping and quantification in an area provide valuable information for the stakeholder to prevent future losses. This study presents the actual flash flood quantification in Al-Lith Watershed, Saudi Arabia. The study is divided into two steps: first is actual flood mapping using remote sensing data, and the second is the flood volume calculation. Two Sentinel-1 images are processed to map the actual flood, i.e., image from 25 May 2018 (dry condition), and 24 November 2018 (peak flood condition). SNAP software is used for the flood mapping step. During SNAP processing, selecting the backscatter data representing the actual flood in an arid region is challenging. The dB range value from 7.23–14.22 is believed to represent the flood. In GIS software, the flood map result is converted into polygon to define the flood boundary. The flood boundary that is overlaid with Digital Elevation Map (DEM) is filled with the same elevation value. The Focal Statistics neighborhood method with three iterations is used to generate the flood surface elevation inside the flood boundary. The raster contains depth information is derived by subtraction of the flood surface elevation with DEM. Several steps are carried out to minimize the overcalculation outside the flood boundary. The flood volume can be derived by the multiplication of flood depth points with each cell size area. The flash flood volume in Al-Lith Watershed on 24 November 2018 is 155,507,439 m 3 . Validity checks are performed by comparing it with other studies, and the result shows that the number is reliable.

Suggested Citation

  • Jaka Budiman & Jarbou Bahrawi & Asep Hidayatulloh & Mansour Almazroui & Mohamed Elhag, 2021. "Volumetric Quantification of Flash Flood Using Microwave Data on a Watershed Scale in Arid Environments, Saudi Arabia," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4115-:d:531629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4115/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4115/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarbou Bahrawi & Hatem Ewea & Ahmed Kamis & Mohamed Elhag, 2020. "Potential flood risk due to urbanization expansion in arid environments, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 795-809, October.
    2. Mohamed Elhag & Jarbou A. Bahrawi, 2019. "Sedimentation mapping in shallow shoreline of arid environments using active remote sensing data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 879-894, November.
    3. Robin Bloch & Abhas K. Jha & Jessica Lamond, 2012. "Cities and Flooding : A Guide to Integrated Urban Flood Risk Management for the 21st Century [Ciudades e Inundaciones : guía para la gestión integrada del riesgo de inundaciones en ciudades en el S," World Bank Publications - Books, The World Bank Group, number 2241.
    4. Amro Elfeki & Milad Masoud & Burhan Niyazi, 2017. "Integrated rainfall–runoff and flood inundation modeling for flash flood risk assessment under data scarcity in arid regions: Wadi Fatimah basin case study, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 87-109, January.
    5. Mohamed Elhag & Shemsu G. Abdurahman, 2020. "Advanced remote sensing techniques in flash flood delineation in Tabuk City, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3401-3413, September.
    6. Ioanna Zotou & Vasilis Bellos & Angeliki Gkouma & Vassilia Karathanassi & Vassilios A. Tsihrintzis, 2020. "Using Sentinel-1 Imagery to Assess Predictive Performance of a Hydraulic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(14), pages 4415-4430, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Elhag & Shemsu G. Abdurahman, 2020. "Advanced remote sensing techniques in flash flood delineation in Tabuk City, Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3401-3413, September.
    2. Hafiz Suliman Munawar & Ahmed W. A. Hammad & S. Travis Waller & Muhammad Jamaluddin Thaheem & Asheem Shrestha, 2021. "An Integrated Approach for Post-Disaster Flood Management Via the Use of Cutting-Edge Technologies and UAVs: A Review," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    3. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Asep Hidayatulloh & Anis Chaabani & Lifu Zhang & Mohamed Elhag, 2022. "DEM Study on Hydrological Response in Makkah City, Saudi Arabia," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    5. Jiayu Ding & Yuewei Wang & Chaoyue Li, 2024. "A Dual-Layer Complex Network-Based Quantitative Flood Vulnerability Assessment Method of Transportation Systems," Land, MDPI, vol. 13(6), pages 1-27, May.
    6. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    7. Abdelmonaim Okacha & Adil Salhi & Kamal Abdelrahman & Hamid Fattasse & Kamal Lahrichi & Kaoutar Bakhouya & Biraj Kanti Mondal, 2024. "Balancing Environmental and Human Needs: Geographic Information System-Based Analytical Hierarchy Process Land Suitability Planning for Emerging Urban Areas in Bni Bouayach Amid Urban Transformation," Sustainability, MDPI, vol. 16(15), pages 1-24, July.
    8. Neslihan Beden & Asli Ulke Keskin, 2021. "Estimation of the local financial costs of flood damage with different methodologies in Unye (Ordu), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2835-2854, September.
    9. Somayeh Ahmadi & Rezvan Ghanbari Movahed & Saeed Gholamrezaie & Mehdi Rahimian, 2022. "Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran," Sustainability, MDPI, vol. 14(2), pages 1-17, January.
    10. Dorcas Idowu & Wendy Zhou, 2023. "Global Megacities and Frequent Floods: Correlation between Urban Expansion Patterns and Urban Flood Hazards," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    11. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    12. Akiko Masuya & Ashraf Dewan & Robert Corner, 2015. "Population evacuation: evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1859-1882, September.
    13. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    14. Jose Cobian & Budy P. Resosudarmo & Alin Halimatussadiah & Susan Olivia, 2022. "Demand for index-based flood insurance in Jakarta, Indonesia," Departmental Working Papers 2022-12, The Australian National University, Arndt-Corden Department of Economics.
    15. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    16. Rotimi Joseph & David Proverbs & Jessica Lamond, 2015. "Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1275-1297, November.
    17. Alida Alves & Berry Gersonius & Arlex Sanchez & Zoran Vojinovic & Zoran Kapelan, 2018. "Multi-criteria Approach for Selection of Green and Grey Infrastructure to Reduce Flood Risk and Increase CO-benefits," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2505-2522, May.
    18. Saleh A. Sefry & Ahmed M. Youssef & Emad Y. AbuAlfadael & Mazen M. AbuAbdullah, 2023. "Flood peak discharge and volume runoff envelope curves for 100-year return period for the arid region: Saudi Arabia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1439-1460, January.
    19. Raoof Mostafazadeh & Amir Sadoddin & Abdolreza Bahremand & Vahed Berdi Sheikh & Arash Zare Garizi, 2017. "Scenario analysis of flood control structures using a multi-criteria decision-making technique in Northeast Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1827-1846, July.
    20. Winter, Amanda K. & Karvonen, Andrew, 2022. "Climate governance at the fringes: Peri-urban flooding drivers and responses," Land Use Policy, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4115-:d:531629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.