IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2985-d369586.html
   My bibliography  Save this article

Influence of User-Related Parameters on Calculated Energy Use in Low-Energy School Buildings

Author

Listed:
  • Branko Simanic

    (Building Services, Faculty of Engineering LTH, Lund University, 223 63 Lund, Sweden
    Teknik, Skanska Sverige AB, 233 22 Malmö, Sweden)

  • Birgitta Nordquist

    (Building Services, Faculty of Engineering LTH, Lund University, 223 63 Lund, Sweden)

  • Hans Bagge

    (Building Physics, Faculty of Engineering LTH, Lund University, 223 63 Lund, Sweden)

  • Dennis Johansson

    (Building Services, Faculty of Engineering LTH, Lund University, 223 63 Lund, Sweden)

Abstract

Literature and experience show that there are large discrepancies between the calculated and measured building energy usages, where user-related parameters are significant factors with regard to energy use in low-energy buildings. Furthermore, the difficulties encountered when quantifying these parameters compound these discrepancies. The main aim of this study was to provide feedback that would help the building industry and research communities to predict more accurately the impact of the user-related parameters on energy performance. The results of the study would, subsequently, contribute to minimizing the discrepancies between calculated and measured energy use. This article analyses simulated building energy use based on randomly chosen combinations of measured user-related parameters in three recently built low-energy schools in Sweden. The results show that energy performance can span from 30 to 160 kWh/(m² y) simply by varying the combination of previously measured user-related parameters in building energy simulations. The study shows that the set points for indoor air temperatures during the heating season and the energy required to run a demand-controlled ventilation system have an extensive influence, while tenant electricity use has a slightly lower influence on building energy use. Variations in occupancy rates and energy for hot water usage have the smallest influences on building energy use.

Suggested Citation

  • Branko Simanic & Birgitta Nordquist & Hans Bagge & Dennis Johansson, 2020. "Influence of User-Related Parameters on Calculated Energy Use in Low-Energy School Buildings," Energies, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2985-:d:369586
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    2. Jessika Steen Englund & Mathias Cehlin & Jan Akander & Bahram Moshfegh, 2020. "Measured and Simulated Energy Use in a Secondary School Building in Sweden—A Case Study of Validation, Airing, and Occupancy Behaviour," Energies, MDPI, vol. 13(9), pages 1-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonghoon Ahn, 2020. "Performance Analyses of Temperature Controls by a Network-Based Learning Controller for an Indoor Space in a Cold Area," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    2. Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.
    3. Jonghoon Ahn, 2021. "Abatement of the Increases in Cooling Energy Use during a Period of Intense Heat by a Network-Based Adaptive Controller," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    4. Yunho Kim & Yunha Park & Hyuncheol Seo & Jungha Hwang, 2023. "Load Prediction Algorithm Applied with Indoor Environment Sensing in University Buildings," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Jonghoon Ahn, 2020. "Improvement of the Performance Balance between Thermal Comfort and Energy Use for a Building Space in the Mid-Spring Season," Sustainability, MDPI, vol. 12(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    2. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    3. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    5. Aldubyan, Mohammad & Krarti, Moncef, 2022. "Impact of stay home living on energy demand of residential buildings: Saudi Arabian case study," Energy, Elsevier, vol. 238(PA).
    6. Qadeer Ali & Muhammad Jamaluddin Thaheem & Fahim Ullah & Samad M. E. Sepasgozar, 2020. "The Performance Gap in Energy-Efficient Office Buildings: How the Occupants Can Help?," Energies, MDPI, vol. 13(6), pages 1-27, March.
    7. Lu Jiang & Xingpeng Chen & Bing Xue, 2019. "Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    8. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    9. Bragolusi, Paolo & D'Alpaos, Chiara, 2022. "The valuation of buildings energy retrofitting: A multiple-criteria approach to reconcile cost-benefit trade-offs and energy savings," Applied Energy, Elsevier, vol. 310(C).
    10. Li, Han & Wang, Zhe & Hong, Tianzhen & Parker, Andrew & Neukomm, Monica, 2021. "Characterizing patterns and variability of building electric load profiles in time and frequency domains," Applied Energy, Elsevier, vol. 291(C).
    11. Mahmud, Arafat & Dhrubo, Ehsan Ahmed & Ahmed, S. Shahnawaz & Chowdhury, Abdul Hasib & Hossain, Md. Farhad & Rahman, Hamidur & Masood, Nahid-Al, 2022. "Energy conservation for existing cooling and lighting loads," Energy, Elsevier, vol. 255(C).
    12. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    13. Ghofrani, Ali & Zaidan, Esmat & Abulibdeh, Ammar, 2022. "Simulation and impact analysis of behavioral and socioeconomic dimensions of energy consumption," Energy, Elsevier, vol. 240(C).
    14. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    15. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    16. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    18. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "How to Encourage Energy Savings Behaviours? The Most Effective Incentives from the Perspective of European Consumers," Energies, MDPI, vol. 14(23), pages 1-25, November.
    19. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    20. Moncef Krarti, 2019. "Evaluation of Energy Efficiency Potential for the Building Sector in the Arab Region," Energies, MDPI, vol. 12(22), pages 1-45, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2985-:d:369586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.