IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1195-d485924.html
   My bibliography  Save this article

Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing

Author

Listed:
  • Ravijanya Chippagiri

    (Department of Civil Engineering, VNIT, Nagpur 440010, India)

  • Hindavi R. Gavali

    (Department of Civil Engineering, VNIT, Nagpur 440010, India)

  • Rahul V. Ralegaonkar

    (Department of Civil Engineering, VNIT, Nagpur 440010, India)

  • Mike Riley

    (Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK)

  • Andy Shaw

    (Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK)

  • Ana Bras

    (Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK)

Abstract

Under the India “Housing for all” scheme, 20 million urban houses have to be constructed by 2022, which requires the rate of construction to be around 8000 houses/day. Previous results by the team show that present design methods for affordable buildings and structures in India need improvement. The challenges are the disposal of solid waste generated from agro-industrial activities and the energy peak demand in extremely hot and cold seasons. The development of bio-based urban infrastructure which can adapt to the climatic conditions has been proposed. Inclusion of sustainable materials such as agro-industrial by-products and insulation materials has resulted in effective environmental sustainability and climate change adaptability. Precast components are highlighted as a suitable solution for this purpose as well as to fulfil the need of mass housing. India has a lesser record in implementing this prefab technology when compared to a global view. For the first time, a novel and sustainable prefab housing solution is tested for scale-up using industrial waste of co-fired blended ash (CBA) and the results are presented here. A model house of real scale measuring 3 × 3 × 3 m 3 was considered as a base case and is compared with 17 other combinations of model house with varying alignment of prefab panels. Comparison was made with commercially available fly ash brick and CBA brick with a conventional roof slab. A simulation study was conducted regarding cost and energy analysis for all the 18 cases. Various brick and panel compositions with CBA for housing were tried and the superior composition was selected. Similarly, 18 model houses of real scale were simulated, with different combinations of walls made of bricks or panels and different building orientations, to check the impact on energy peak cooling and cost. Results show that peak cooling load can be reduced by six times with bio-based prefab panels. Prefab construction can be considered for mass housing ranging above 100 housing units, each consisting of an area of 25 m 2 .

Suggested Citation

  • Ravijanya Chippagiri & Hindavi R. Gavali & Rahul V. Ralegaonkar & Mike Riley & Andy Shaw & Ana Bras, 2021. "Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1195-:d:485924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lara Jaillon & C. S. Poon, 2008. "Sustainable construction aspects of using prefabrication in dense urban environment: a Hong Kong case study," Construction Management and Economics, Taylor & Francis Journals, vol. 26(9), pages 953-966.
    2. Innocent Chirisa & Elmond Bandauko & Elias Mazhindu & Ndarova Audrey Kwangwama & Godfrey Chikowore, 2016. "Building resilient infrastructure in the face of climate change in African cities: Scope, potentiality and challenges," Development Southern Africa, Taylor & Francis Journals, vol. 33(1), pages 113-127, January.
    3. Roberto Sanchez Rodriguez & Diana Ürge-Vorsatz & Aliyu Salisu Barau, 2018. "Sustainable Development Goals and climate change adaptation in cities," Nature Climate Change, Nature, vol. 8(3), pages 181-183, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahesti Okitasari & Ranjeeta Mishra & Masachika Suzuki, 2022. "Socio-Economic Drivers of Community Acceptance of Sustainable Social Housing: Evidence from Mumbai," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    2. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    3. Claudio Del Pero & Oscar Eugenio Bellini & Maricla Martire & Davide di Summa, 2021. "Sustainable Solutions for Mass-Housing Design in Africa: Energy and Cost Assessment for the Somali Context," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    4. Albina Scioti & Mariella De Fino & Silvia Martiradonna & Fabio Fatiguso, 2022. "Construction Solutions and Materials to Optimize the Energy Performances of EPS-RC Precast Bearing Walls," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    5. Ravijanya Chippagiri & Ana Bras & Deepak Sharma & Rahul V. Ralegaonkar, 2022. "Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry," Energies, MDPI, vol. 15(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiansheng Chen & Ruisong Quan, 2021. "A spatiotemporal analysis of urban resilience to the COVID-19 pandemic in the Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 829-854, March.
    2. Pero, Margherita & Stößlein, Martin & Cigolini, Roberto, 2015. "Linking product modularity to supply chain integration in the construction and shipbuilding industries," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 602-615.
    3. Lei Jiang & Zhongfu Li & Long Li & Yunli Gao, 2018. "Constraints on the Promotion of Prefabricated Construction in China," Sustainability, MDPI, vol. 10(7), pages 1, July.
    4. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    5. Kaicheng Shen & Chen Cheng & Xiaodong Li & Zhihui Zhang, 2019. "Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    6. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    7. Hosang Hyun & Hyung-Geun Kim & Jin-Sung Kim, 2022. "Integrated Off-Site Construction Design Process including DfMA Considerations," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    8. Lin Zhang & Shan Guo & Zezhou Wu & Ahmed Alsaedi & Tasawar Hayat, 2018. "SWOT Analysis for the Promotion of Energy Efficiency in Rural Buildings: A Case Study of China," Energies, MDPI, vol. 11(4), pages 1-17, April.
    9. Michele Acuto & Benjamin Leffel, 2021. "Understanding the global ecosystem of city networks," Urban Studies, Urban Studies Journal Limited, vol. 58(9), pages 1758-1774, July.
    10. Alasdair Reid, 2023. "Closing the Affordable Housing Gap: Identifying the Barriers Hindering the Sustainable Design and Construction of Affordable Homes," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
    11. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Zhao Zhai & Ming Shan & Amos Darko & Albert P. C. Chan, 2021. "Corruption in Construction Projects: Bibliometric Analysis of Global Research," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    14. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    15. Chen, Wendy Y. & Hua, Junyi, 2017. "Heterogeneity in resident perceptions of a bio-cultural heritage in Hong Kong: A latent class factor analysis," Ecosystem Services, Elsevier, vol. 24(C), pages 170-179.
    16. Kangning Liu & Yikun Su & Shoujian Zhang, 2018. "Evaluating Supplier Management Maturity in Prefabricated Construction Project-Survey Analysis in China," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
    17. Dandan He & Zhongfu Li & Chunlin Wu & Xin Ning, 2018. "An E-Commerce Platform for Industrialized Construction Procurement Based on BIM and Linked Data," Sustainability, MDPI, vol. 10(8), pages 1-21, July.
    18. Andrew Agapiou, 2021. "An Exploration of the Best Value Perceptions of Small Housebuilding Developers towards Offsite Construction," Sustainability, MDPI, vol. 13(7), pages 1-19, April.
    19. Yanjie Wang & Fucheng Wang & Peidong Sang & Huanbin Song, 2021. "Analysing factors affecting developers’ behaviour towards the adoption of prefabricated buildings in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14245-14263, October.
    20. Wen Jiang & Xian Qi, 2022. "Pricing and assembly rate decisions for a prefabricated construction supply chain under subsidy policies," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1195-:d:485924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.