IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7548-d941127.html
   My bibliography  Save this article

Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry

Author

Listed:
  • Ravijanya Chippagiri

    (Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Ana Bras

    (Built Environment and Sustainable Technologies (BEST) Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK)

  • Deepak Sharma

    (Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92831, USA)

  • Rahul V. Ralegaonkar

    (Department of Civil Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

Abstract

The construction industry has experienced phenomenal growth because of technological advancements in the past couple of decades. Prefabrication constitutes a sizeable share of this industry and is being adopted all over the world. The method of casting construction elements in a controlled environment and assembling them on-site has revolutionised the industry. Research on various aspects of the technology is ongoing around the world, and an impressive number of articles have been published. However, the prefab technology, materials used, and terminology have varied across locations, which may have hindered the method’s wider acceptability. By evaluating technical articles published between 1991 and 2022, this report analyses the present body of knowledge regarding prefab technology, its evolution, sustainability, and stakeholder views. This technology effectively contributes around 40% in time saving, 27% in cost reduction, 30% in reduced carbon emissions, and 84% in on-site wastage reduction. It also increases quality, gives a dependable alternative for meeting mass construction targets, is energy efficient, and provides environmentally conscious options. This paper contributes to the body of knowledge by providing a snapshot of the prefab industry spanning three decades, detailing a wide range of factors affecting the industry.

Suggested Citation

  • Ravijanya Chippagiri & Ana Bras & Deepak Sharma & Rahul V. Ralegaonkar, 2022. "Technological and Sustainable Perception on the Advancements of Prefabrication in Construction Industry," Energies, MDPI, vol. 15(20), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7548-:d:941127
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nick Blismas & Christine Pasquire & Alistair Gibb, 2006. "Benefit evaluation for off-site production in construction," Construction Management and Economics, Taylor & Francis Journals, vol. 24(2), pages 121-130.
    2. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2017. "Factors Affecting the Capital Cost of Prefabrication—A Case Study of China," Sustainability, MDPI, vol. 9(9), pages 1-22, August.
    3. Ravijanya Chippagiri & Hindavi R. Gavali & Rahul V. Ralegaonkar & Mike Riley & Andy Shaw & Ana Bras, 2021. "Application of Sustainable Prefabricated Wall Technology for Energy Efficient Social Housing," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    4. Zhen Liu & Ziyuan Chi & Mohamed Osmani & Peter Demian, 2021. "Blockchain and Building Information Management (BIM) for Sustainable Building Development within the Context of Smart Cities," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. John Quale & Matthew J. Eckelman & Kyle W. Williams & Greg Sloditskie & Julie B. Zimmerman, 2012. "Construction Matters: Comparing Environmental Impacts of Building Modular and Conventional Homes in the United States," Journal of Industrial Ecology, Yale University, vol. 16(2), pages 243-253, April.
    6. Qingye Han & Junjie Chang & Guiwen Liu & Heng Zhang, 2022. "The Carbon Emission Assessment of a Building with Different Prefabrication Rates in the Construction Stage," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Mujeeb & Manideep Samudrala & Bhagyashri A. Lanjewar & Ravijanya Chippagiri & Muralidhar Kamath & Rahul V. Ralegaonkar, 2023. "Development of Alkali-Activated 3D Printable Concrete: A Review," Energies, MDPI, vol. 16(10), pages 1-21, May.
    2. Bhagyashri A. Lanjewar & Ravijanya Chippagiri & Vaidehi A. Dakwale & Rahul V. Ralegaonkar, 2023. "Application of Alkali-Activated Sustainable Materials: A Step towards Net Zero Binder," Energies, MDPI, vol. 16(2), pages 1-21, January.
    3. Manideep Samudrala & Syed Mujeeb & Bhagyashri A. Lanjewar & Ravijanya Chippagiri & Muralidhar Kamath & Rahul V. Ralegaonkar, 2023. "3D-Printable Concrete for Energy-Efficient Buildings," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong Dang Hoang Nhat Nguyen & Hyosoo Moon & Yonghan Ahn, 2022. "Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    2. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Seoyoung Jung & Seulki Lee & Jungho Yu, 2021. "Identification and Prioritization of Critical Success Factors for Off-Site Construction Using ISM and MICMAC Analysis," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    4. Qianqian Shi & Jianbo Zhu & Marcel Hertogh & Zhaohan Sheng, 2018. "Incentive Mechanism of Prefabrication in Mega Projects with Reputational Concerns," Sustainability, MDPI, vol. 10(4), pages 1-16, April.
    5. Kamali, Mohammad & Hewage, Kasun, 2016. "Life cycle performance of modular buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1171-1183.
    6. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    7. Zezhou Wu & Lirong Luo & Heng Li & Ying Wang & Guoqiang Bi & Maxwell Fordjour Antwi-Afari, 2021. "An Analysis on Promoting Prefabrication Implementation in Construction Industry towards Sustainability," IJERPH, MDPI, vol. 18(21), pages 1-21, October.
    8. Pero, Margherita & Stößlein, Martin & Cigolini, Roberto, 2015. "Linking product modularity to supply chain integration in the construction and shipbuilding industries," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 602-615.
    9. Jun Geng & Yi Huang & Xiang Li & Yun Zhang, 2023. "Overcoming Barriers to the Adoption of Recycled Construction Materials: A Comprehensive PEST Analysis and Tailored Strategies," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    10. Albina Scioti & Mariella De Fino & Silvia Martiradonna & Fabio Fatiguso, 2022. "Construction Solutions and Materials to Optimize the Energy Performances of EPS-RC Precast Bearing Walls," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    11. Zezhou Wu & Changhong Chen & Yuzhu Cai & Chen Lu & Hao Wang & Tao Yu, 2019. "BIM-Based Visualization Research in the Construction Industry: A Network Analysis," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    12. Pei Dang & Zhanwen Niu & Shang Gao & Lei Hou & Guomin Zhang, 2020. "Critical Factors Influencing the Sustainable Construction Capability in Prefabrication of Chinese Construction Enterprises," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    13. Mahesti Okitasari & Ranjeeta Mishra & Masachika Suzuki, 2022. "Socio-Economic Drivers of Community Acceptance of Sustainable Social Housing: Evidence from Mumbai," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    14. Patrick Dallasega & Erwin Rauch, 2017. "Sustainable Construction Supply Chains through Synchronized Production Planning and Control in Engineer-to-Order Enterprises," Sustainability, MDPI, vol. 9(10), pages 1-25, October.
    15. Craig Langston & Weiwei Zhang, 2021. "DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    16. Kaicheng Shen & Chen Cheng & Xiaodong Li & Zhihui Zhang, 2019. "Environmental Cost-Benefit Analysis of Prefabricated Public Housing in Beijing," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    17. Habib Sadri & Ibrahim Yitmen & Lavinia Chiara Tagliabue & Florian Westphal & Algan Tezel & Afshin Taheri & Goran Sibenik, 2023. "Integration of Blockchain and Digital Twins in the Smart Built Environment Adopting Disruptive Technologies—A Systematic Review," Sustainability, MDPI, vol. 15(4), pages 1-46, February.
    18. Yikun Su & Hong Xue & Huakang Liang, 2019. "An Evaluation Model for Urban Comprehensive Carrying Capacity: An Empirical Case from Harbin City," IJERPH, MDPI, vol. 16(3), pages 1-25, January.
    19. Juan Francisco Fernández Rodríguez, 2023. "Sustainable Design Protocol in BIM Environments: Case Study of 3D Virtual Models of a Building in Seville (Spain) Based on BREEAM Method," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    20. Rasaki Kolawole Fagbenro & Riza Yosia Sunindijo & Chethana Illankoon & Samuel Frimpong, 2024. "Importance of Prefabrication to Easing Construction Workers’ Experience of Mental Health Stressors," IJERPH, MDPI, vol. 21(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7548-:d:941127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.