IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i24p13826-d702405.html
   My bibliography  Save this article

PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors

Author

Listed:
  • Xuebo Liu

    (Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA)

  • Yingying Wu

    (Department of Interior Design and Fashion Studies, Kansas State University, Manhattan, KS 66506, USA)

  • Hongyu Wu

    (Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA)

Abstract

Rooftop photovoltaics (PV) and electrical vehicles (EV) have become more economically viable to residential customers. Most existing home energy management systems (HEMS) only focus on the residential occupants’ thermal comfort in terms of indoor temperature and humidity while neglecting their other behaviors or concerns. This paper aims to integrate residential PV and EVs into the HEMS in an occupant-centric manner while taking into account the occupants’ thermal comfort, clothing behaviors, and concerns on the state-of-charge (SOC) of EVs. A stochastic adaptive dynamic programming (ADP) model was proposed to optimally determine the setpoints of heating, ventilation, air conditioning (HVAC), occupant’s clothing decisions, and the EV’s charge/discharge schedule while considering uncertainties in the outside temperature, PV generation, and EV’s arrival SOC. The nonlinear and nonconvex thermal comfort model, EV SOC concern model, and clothing behavior model were holistically embedded in the ADP-HEMS model. A model predictive control framework was further proposed to simulate a residential house under the time of use tariff, such that it continually updates with optimal appliance schedules decisions passed to the house model. Cosimulations were carried out to compare the proposed HEMS with a baseline model that represents the current operational practice. The result shows that the proposed HEMS can reduce the energy cost by 68.5% while retaining the most comfortable thermal level and negligible EV SOC concerns considering the occupant’s behaviors.

Suggested Citation

  • Xuebo Liu & Yingying Wu & Hongyu Wu, 2021. "PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13826-:d:702405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/24/13826/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/24/13826/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wei & Hong, Tianzhen & Li, Nan & Wang, Ryan Qi & Chen, Jiayu, 2019. "Linking energy-cyber-physical systems with occupancy prediction and interpretation through WiFi probe-based ensemble classification," Applied Energy, Elsevier, vol. 236(C), pages 55-69.
    2. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    3. Jin, Xin & Baker, Kyri & Christensen, Dane & Isley, Steven, 2017. "Foresee: A user-centric home energy management system for energy efficiency and demand response," Applied Energy, Elsevier, vol. 205(C), pages 1583-1595.
    4. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    5. Methee Srikranjanapert & Siripha Junlakarn & Naebboon Hoonchareon, 2021. "How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Alblawi & M. Talaat, 2022. "Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance," Sustainability, MDPI, vol. 14(5), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Moaaz Elkabalawy & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Ghasan Alfalah, 2024. "CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
    3. Taewook Kang, 2020. "BIM-Based Human Machine Interface (HMI) Framework for Energy Management," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    4. Georgiou, Giorgos S. & Christodoulides, Paul & Kalogirou, Soteris A., 2019. "Real-time energy convex optimization, via electrical storage, in buildings – A review," Renewable Energy, Elsevier, vol. 139(C), pages 1355-1365.
    5. Kazmi, Hussain & Suykens, Johan & Balint, Attila & Driesen, Johan, 2019. "Multi-agent reinforcement learning for modeling and control of thermostatically controlled loads," Applied Energy, Elsevier, vol. 238(C), pages 1022-1035.
    6. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    7. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    8. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    9. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    10. Jung, Seunghoon & Jeoung, Jaewon & Kang, Hyuna & Hong, Taehoon, 2021. "Optimal planning of a rooftop PV system using GIS-based reinforcement learning," Applied Energy, Elsevier, vol. 298(C).
    11. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    12. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    13. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    14. Wang, Zhe & Hong, Tianzhen, 2020. "Learning occupants’ indoor comfort temperature through a Bayesian inference approach for office buildings in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Jie Sun & Jiao Wang & Yonghui Sun & Mingxin Xu & Yong Shi & Zifa Liu & Xingya Wen, 2021. "Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM," Energies, MDPI, vol. 14(15), pages 1-13, July.
    16. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    17. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    18. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    19. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    20. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:13826-:d:702405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.