IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920310072.html
   My bibliography  Save this article

Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties

Author

Listed:
  • Mak, Davye
  • Choi, Dae-Hyun

Abstract

This study proposes an optimization framework that coordinates the operations of a home energy management system (HEMS) in a low-voltage (LV) distribution network and Volt/VAR optimization (VVO) in a medium-voltage (MV) distribution network through flexible electricity consumption and production of prosumers. The proposed framework consists of a three-level optimization problem, which corresponds to the HEMS for a prosumer at the first level, HEMS aggregator at the second level, and VVO at the third level. The optimal operations of home appliances and distributed energy resources are scheduled in the HEMS according to the prosumer’s preferred appliance scheduling and comfort level. Given the optimal energy consumption schedules from multiple HEMSs, the HEMS aggregator recalculates them while interacting with the VVO, which monitors and controls the MV distribution network efficiently. Furthermore, to incorporate the uncertainty for the predicted errors of residential solar photovoltaic generation and outdoor temperature into the proposed framework, the deterministic optimization (DO)-based HEMS aggregator model is reformulated into a chance constrained optimization (CCO)-based model. Numerical examples tested in IEEE 13-node MV and CIGRE 18-node LV distribution systems show that, in contrast with a method without coordination of HEMS and VVO, the proposed DO-based approach reduces the total energy losses, active energy consumption, and reactive energy consumption by 21.03%,7.62%, and 115.51%, respectively, in the LV system, and 2.34%,1.36%, and 4.07%, respectively, in the MV system. In addition, the performance of the proposed CCO-based approach was validated in terms of probability level of chance constraints.

Suggested Citation

  • Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310072
    DOI: 10.1016/j.apenergy.2020.115495
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
    2. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    3. Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
    4. Davye Mak & Dae-Hyun Choi, 2018. "Hierarchical Look-Ahead Conservation Voltage Reduction Framework Considering Distributed Energy Resources and Demand Reduction," Energies, MDPI, vol. 11(12), pages 1-20, November.
    5. Rastegar, Mohammad & Fotuhi-Firuzabad, Mahmud & Aminifar, Farrokh, 2012. "Load commitment in a smart home," Applied Energy, Elsevier, vol. 96(C), pages 45-54.
    6. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    7. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    8. Iria, José & Soares, Filipe & Matos, Manuel, 2018. "Optimal supply and demand bidding strategy for an aggregator of small prosumers," Applied Energy, Elsevier, vol. 213(C), pages 658-669.
    9. Jin, Xin & Baker, Kyri & Christensen, Dane & Isley, Steven, 2017. "Foresee: A user-centric home energy management system for energy efficiency and demand response," Applied Energy, Elsevier, vol. 205(C), pages 1583-1595.
    10. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
    2. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    3. Etedadi, Farshad & Kelouwani, Sousso & Agbossou, Kodjo & Henao, Nilson & Laurencelle, François, 2023. "Consensus and sharing based distributed coordination of home energy management systems with demand response enabled baseboard heaters," Applied Energy, Elsevier, vol. 336(C).
    4. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    5. Ruan, Hebin & Gao, Hongjun & Qiu, Haifeng & Gooi, Hoay Beng & Liu, Junyong, 2023. "Distributed operation optimization of active distribution network with P2P electricity trading in blockchain environment," Applied Energy, Elsevier, vol. 331(C).
    6. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    7. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    8. Vijayan, Vineeth & Mohapatra, Abheejeet & Singh, S.N., 2021. "Demand Response with Volt/Var Optimization for unbalanced active distribution systems," Applied Energy, Elsevier, vol. 300(C).
    9. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
    2. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    4. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    5. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).
    6. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    7. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    8. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    9. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
    10. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    11. Hussain, I. & Ali, S.M. & Khan, B. & Ullah, Z. & Mehmood, C.A. & Jawad, M. & Farid, U. & Haider, A., 2019. "Stochastic Wind Energy Management Model within smart grid framework: A joint Bi-directional Service Level Agreement (SLA) between smart grid and Wind Energy District Prosumers," Renewable Energy, Elsevier, vol. 134(C), pages 1017-1033.
    12. Carlos Cruz & Esther Palomar & Ignacio Bravo & Alfredo Gardel, 2020. "Cooperative Demand Response Framework for a Smart Community Targeting Renewables: Testbed Implementation and Performance Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    13. Neves, Diana & Scott, Ian & Silva, Carlos A., 2020. "Peer-to-peer energy trading potential: An assessment for the residential sector under different technology and tariff availabilities," Energy, Elsevier, vol. 205(C).
    14. Qi, Ning & Cheng, Lin & Xu, Helin & Wu, Kuihua & Li, XuLiang & Wang, Yanshuo & Liu, Rui, 2020. "Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads," Applied Energy, Elsevier, vol. 279(C).
    15. Nur Mohammad & Yateendra Mishra, 2018. "The Role of Demand Response Aggregators and the Effect of GenCos Strategic Bidding on the Flexibility of Demand," Energies, MDPI, vol. 11(12), pages 1-22, November.
    16. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
    17. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
    18. Mohammadi Rad, Amin & Barforoushi, Taghi, 2020. "Optimal scheduling of resources and appliances in smart homes under uncertainties considering participation in spot and contractual markets," Energy, Elsevier, vol. 192(C).
    19. Iria, José & Soares, Filipe & Matos, Manuel, 2019. "Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets," Applied Energy, Elsevier, vol. 238(C), pages 1361-1372.
    20. Lu, Xiaoxing & Li, Kangping & Xu, Hanchen & Wang, Fei & Zhou, Zhenyu & Zhang, Yagang, 2020. "Fundamentals and business model for resource aggregator of demand response in electricity markets," Energy, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920310072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.