IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4525-d602182.html
   My bibliography  Save this article

Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM

Author

Listed:
  • Jie Sun

    (State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China)

  • Jiao Wang

    (State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China)

  • Yonghui Sun

    (State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China)

  • Mingxin Xu

    (State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China)

  • Yong Shi

    (State Grid Inner Mongolia Eastern Electric Power Co., Ltd., Economic and Technical Research Institute, Hohhot 010011, China)

  • Zifa Liu

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Xingya Wen

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

The accuracy of the electric heating load forecast in a new load has a close relationship with the safety and stability of distribution network in normal operation. It also has enormous implications on the architecture of a distribution network. Firstly, the thermal comfort model of the human body was established to analyze the comfortable body temperature of a main crowd under different temperatures and levels of humidity. Secondly, it analyzed the influence factors of electric heating load, and from the perspective of meteorological factors, it selected the difference between human thermal comfort temperature and actual temperature and humidity by gray correlation analysis. Finally, the attention mechanism was utilized to promote the precision of combined adjunction model, and then the data results of the predicted electric heating load were obtained. In the verification, the measured data of electric heating load in a certain area of eastern Inner Mongolia were used. The results showed that after considering the input vector with most relative factors such as temperature and human thermal comfort, the LSTM network can realize the accurate prediction of the electric heating load.

Suggested Citation

  • Jie Sun & Jiao Wang & Yonghui Sun & Mingxin Xu & Yong Shi & Zifa Liu & Xingya Wen, 2021. "Electric Heating Load Forecasting Method Based on Improved Thermal Comfort Model and LSTM," Energies, MDPI, vol. 14(15), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4525-:d:602182
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    2. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    3. Iasmin Lourenço Niza & Evandro Eduardo Broday, 2022. "An Analysis of Thermal Comfort Models: Which One Is Suitable Model to Assess Thermal Reality in Brazil?," Energies, MDPI, vol. 15(15), pages 1-19, July.
    4. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    5. Yulong Yang & Zhiwei Zhang, 2024. "A Bi-Level Optimal Scheduling Strategy for Microgrids for Temperature-Controlled Capacity and Time-Shifted Capacity, Considering Customer Satisfaction," Energies, MDPI, vol. 17(8), pages 1-22, April.
    6. Zhang, Sheng & Cheng, Yong & Fang, Zhaosong & Huan, Chao & Lin, Zhang, 2017. "Optimization of room air temperature in stratum-ventilated rooms for both thermal comfort and energy saving," Applied Energy, Elsevier, vol. 204(C), pages 420-431.
    7. Nematchoua, Modeste Kameni & Tchinda, René & Ricciardi, Paola & Djongyang, Noël, 2014. "A field study on thermal comfort in naturally-ventilated buildings located in the equatorial climatic region of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 381-393.
    8. Shahzad, Sally & Brennan, John & Theodossopoulos, Dimitris & Hughes, Ben & Calautit, John Kaiser, 2017. "Energy and comfort in contemporary open plan and traditional personal offices," Applied Energy, Elsevier, vol. 185(P2), pages 1542-1555.
    9. Zhang, Sheng & Cheng, Yong & Liu, Jian & Lin, Zhang, 2019. "Subzone control optimization of air distribution for thermal comfort and energy efficiency under cooling load uncertainty," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    11. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    12. Yousefi, Mojtaba & Hajizadeh, Amin & Soltani, Mohsen N. & Hredzak, Branislav & Kianpoor, Nasrin, 2020. "Profit assessment of home energy management system for buildings with A-G energy labels," Applied Energy, Elsevier, vol. 277(C).
    13. Nematchoua, Modeste Kameni & Ricciardi, Paola & Buratti, Cinzia, 2017. "Statistical analysis of indoor parameters an subjective responses of building occupants in a hot region of Indian ocean; a case of Madagascar island," Applied Energy, Elsevier, vol. 208(C), pages 1562-1575.
    14. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    15. Liu, Xinrui & Hou, Min & Sun, Siluo & Wang, Jiawei & Sun, Qiuye & Dong, Chaoyu, 2022. "Multi-time scale optimal scheduling of integrated electricity and district heating systems considering thermal comfort of users: An enhanced-interval optimization method," Energy, Elsevier, vol. 254(PB).
    16. Xuebo Liu & Yingying Wu & Hongyu Wu, 2021. "PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    17. Jradi, M. & Riffat, S., 2014. "Experimental and numerical investigation of a dew-point cooling system for thermal comfort in buildings," Applied Energy, Elsevier, vol. 132(C), pages 524-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4525-:d:602182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.