IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i22p12649-d680214.html
   My bibliography  Save this article

Suggestions for Revegetation over the Next 30 Years Based on Precipitation in the Three North Region of China

Author

Listed:
  • Yu Xiao

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Gaodi Xie

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chunxia Lu

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Changshun Zhang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jie Xu

    (School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China)

  • Jingya Liu

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Keyu Qin

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China)

  • Yiqiu Li

    (School of Geographic and Environments Sciences, Guizhou Normal University, Guiyang 550001, China)

  • Chaoxuan Xu

    (ShaoXing Urban Planning and Design Institute, Shaoxing 312099, China)

  • Caixia Zhang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Yangyang Wang

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shuang Gan

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jia Liu

    (Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Liqiang Ge

    (National Research Center for Geoanalysis, Beijing 100037, China)

Abstract

Afforestation in the Three North Region (TNR) of China has received wide concern due to the low survival rate and threats to water security associated with the lack of available precipitation for vegetation. It is crucial to provide a spatial layout for revegetation according to the available precipitation to achieve the vegetation cover target. This study investigated the spatial pattern of precipitation, determined the suitable vegetation distribution based on the ecological water requirements and precipitation, and proposed an optimized revegetation scheme by comparing the actual and suitable vegetation patterns. The results indicated that the actual vegetation that matched the pixel-level precipitation accounted for 67.24% of the total vegetation area in the TNR. However, 18.50% of the actual forest, 21.82% of the actual shrublands, and 19.95% of the actual grasslands were overloaded with respect to precipitation. The total suitable vegetation area was reduced slightly compared to the actual vegetation area. There is still some potential for the revegetation of forest and shrublands, mainly those in the eastern and south-eastern parts of the TNR. The optimized revegetation area in the TNR was 3.04 × 10 6 km 2 , including a maintenance management type of 2.19 × 10 6 km 2 , an upgrade type of 0.49 × 10 6 km 2 , and a degradation type of 0.37 × 10 6 km 2 . Maintenance management (natural restoration) and transformation to vegetation types with lower ecological water requirements were recognized as important revegetation practices in the TNR. This study provides guidelines to adjust the Three North Shelterbelt Project policies based on precipitation data to reduce the negative impact of revegetation on the hydrological cycle.

Suggested Citation

  • Yu Xiao & Gaodi Xie & Chunxia Lu & Changshun Zhang & Jie Xu & Jingya Liu & Keyu Qin & Yiqiu Li & Chaoxuan Xu & Caixia Zhang & Yangyang Wang & Shuang Gan & Jia Liu & Liqiang Ge, 2021. "Suggestions for Revegetation over the Next 30 Years Based on Precipitation in the Three North Region of China," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12649-:d:680214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/22/12649/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/22/12649/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    2. Zheng, Xiao & Zhu, Jiaojun & Xing, Zefeng, 2016. "Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China," Agricultural Systems, Elsevier, vol. 143(C), pages 49-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinhao Suo & Shixiong Cao, 2021. "China’s three north shelter forest program: cost–benefit analysis and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14605-14618, October.
    2. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    4. Weijia Liang & Quan Quan & Bohua Wu & Shuhong Mo, 2023. "Response of Vegetation Dynamics in the Three-North Region of China to Climate and Human Activities from 1982 to 2018," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    5. Deng, Jifeng & Yao, Jiaqi & Zheng, Xiao & Gao, Guanglei, 2021. "Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China," Agricultural Water Management, Elsevier, vol. 249(C).
    6. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    7. Song, Lining & Zhu, Jiaojun & Li, Mingcai & Zhang, Jinxin & Lv, Linyou, 2016. "Sources of water used by Pinus sylvestris var. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 164(P2), pages 281-290.
    8. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    9. Song, Lining & Zhu, Jiaojun & Zhang, Ting & Wang, Kai & Wang, Guochen & Liu, Jianhua, 2021. "Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    12. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Matthew Heron Wilson & Sarah Taylor Lovell, 2016. "Agroforestry—The Next Step in Sustainable and Resilient Agriculture," Sustainability, MDPI, vol. 8(6), pages 1-15, June.
    14. Zheng, Xiao & Zhu, Jiaojun & Xing, Zefeng, 2016. "Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China," Agricultural Systems, Elsevier, vol. 143(C), pages 49-60.
    15. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Niels Thevs & Alina Joana Gombert & Eva Strenge & Roland Lleshi & Kumar Aliev & Begaiym Emileva, 2019. "Tree Wind Breaks in Central Asia and Their Effects on Agricultural Water Consumption," Land, MDPI, vol. 8(11), pages 1-17, November.
    17. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    18. Pengfei Cheng & Jie Li & Hongli Zhang & Guanghua Cheng, 2023. "Sustainable Management Behavior of Farmland Shelterbelt of Farmers in Ecologically Fragile Areas: Empirical Evidence from Xinjiang, China," Sustainability, MDPI, vol. 15(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:22:p:12649-:d:680214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.