IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000718.html
   My bibliography  Save this article

Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China

Author

Listed:
  • Deng, Jifeng
  • Yao, Jiaqi
  • Zheng, Xiao
  • Gao, Guanglei

Abstract

Mongolian pine (Pinus sylvestris var. mongolica) plantations have ecological significance for desertification control and degraded land restoration in drought-induced regions. To date, knowledge about the dynamics of transpiration and canopy stomatal conductance (gs) of Mongolian pine in the semiarid deserts in Northern China is quite limited. Thus, better understanding its physical response to environmental factors and exploring the mechanisms of forest transpiration can offer a theoretical basis for a reasonable tree planting program in semi-arid regions. In this study, transpiration and gs changes in Mongolian pine plantations for a mature forest (MMPP), half-mature forest (HMPP), and young forest (YMPP) were obtained using sap flow observations, while simultaneously monitoring the atmospheric and soil moisture contents. The results showed that the canopy transpiration per unit leaf area (EL) averaged 0.97 mm d–1, 0.60 mm d–1, and 0.45 mm d–1 in MMPP, HMPP, and YMPP, respectively, and the EL of Mongolian pine could be attributed to evaporative demand, soil moisture status, and gs. EL was obviously affected by air temperature, photosynthetic active radiation (PAR), and vapor pressure deficit (VPD) with the highest determined coefficient. The low values measured for the dimensionless coefficient (Ω = 0.041, 0.15, and 0.18) indicated that the canopy and the atmosphere were highly coupled. gs had more control over EL, and thus gs was more limited by VPD than that PAR. The average gs was 105.27, 105.26, and 99.44 mmol m–2 s–1 for MMPP, HMPP, and YMPP, respectively; Both MMPP and YMPP had lower sensitivity for stomatal regulation than HMPP, and the maximum gs was found in trees with both small and large tree diameters at breast height. Therefore, MMPP and YMPP were suspected to vary based on environmental conditions and were more susceptible to decline under mega drought conditions.

Suggested Citation

  • Deng, Jifeng & Yao, Jiaqi & Zheng, Xiao & Gao, Guanglei, 2021. "Transpiration and canopy stomatal conductance dynamics of Mongolian pine plantations in semiarid deserts, Northern China," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000718
    DOI: 10.1016/j.agwat.2021.106806
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Lining & Zhu, Jiaojun & Li, Mingcai & Zhang, Jinxin & Lv, Linyou, 2016. "Sources of water used by Pinus sylvestris var. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 164(P2), pages 281-290.
    2. Barradas, V.L. & Nicolas, E. & Torrecillas, A. & Alarcon, J.J., 2005. "Transpiration and canopy conductance in young apricot (Prunus armenica L.) trees subjected to different PAR levels and water stress," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 323-333, August.
    3. Zheng, X. & Zhu, J.J. & Yan, Q.L. & Song, L.N., 2012. "Effects of land use changes on the groundwater table and the decline of Pinus sylvestris var. mongolica plantations in southern Horqin Sandy Land, Northeast China," Agricultural Water Management, Elsevier, vol. 109(C), pages 94-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Wang & Zhenqi Yang & Jianying Guo & Fucang Qin & Yabo Wang & Jiajun Ning, 2024. "Applicability of a Modified Gash Model for Artificial Forests in the Transitional Zone between the Loess Hilly Region and the Mu Us Sandy Land, China," Sustainability, MDPI, vol. 16(19), pages 1-16, October.
    2. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).
    3. Xue, Bing & Jiang, Yan & Wang, Qijie & Ma, Bin & Hou, Zhen’an & Liang, Xue & Cui, Yirui & Li, Fangfang, 2024. "Seasonal transpiration dynamics and water use strategy of a farmland shelterbelt in Gurbantunggut Desert oasis, northwestern China," Agricultural Water Management, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ze & Liu, Yu & Qiu, Kaiyang & López-Vicente, Manuel & Shen, Weibo & Wu, Gao-Lin, 2021. "Soil-water deficit in deep soil layers results from the planted forest in a semi-arid sandy land: Implications for sustainable agroforestry water management," Agricultural Water Management, Elsevier, vol. 254(C).
    2. Dang, Hongzhong & Han, Hui & Chen, Shuai & Li, Mingyang, 2021. "A fragile soil moisture environment exacerbates the climate change-related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: Long-term observations," Agricultural Water Management, Elsevier, vol. 251(C).
    3. Xinhao Suo & Shixiong Cao, 2021. "China’s three north shelter forest program: cost–benefit analysis and policy implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14605-14618, October.
    4. Hou, Chenli & Tian, Delong & Xu, Bing & Ren, Jie & Hao, Lei & Chen, Ning & Li, Xianyue, 2021. "Use of the stable oxygen isotope method to evaluate the difference in water consumption and utilization strategy between alfalfa and maize fields in an arid shallow groundwater area," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Weijia Liang & Quan Quan & Bohua Wu & Shuhong Mo, 2023. "Response of Vegetation Dynamics in the Three-North Region of China to Climate and Human Activities from 1982 to 2018," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    6. Song, Lining & Zhu, Jiaojun & Li, Mingcai & Zhang, Jinxin & Lv, Linyou, 2016. "Sources of water used by Pinus sylvestris var. mongolica trees based on stable isotope measurements in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 164(P2), pages 281-290.
    7. Wu, Yao & Liu, Tingxi & Paredes, Paula & Duan, Limin & Pereira, Luis S., 2015. "Water use by a groundwater dependent maize in a semi-arid region of Inner Mongolia: Evapotranspiration partitioning and capillary rise," Agricultural Water Management, Elsevier, vol. 152(C), pages 222-232.
    8. Song, Lining & Zhu, Jiaojun & Zhang, Ting & Wang, Kai & Wang, Guochen & Liu, Jianhua, 2021. "Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China," Agricultural Water Management, Elsevier, vol. 243(C).
    9. Deng, Jianqiang & Zhang, Zhixin & Liang, Zhiting & Li, Zhou & Yang, Xianlong & Wang, Zikui & Coulter, Jeffrey A. & Shen, Yuying, 2020. "Replacing summer fallow with annual forage improves crude protein productivity and water use efficiency of the summer fallow-winter wheat cropping system," Agricultural Water Management, Elsevier, vol. 230(C).
    10. Li, Maona & Zhang, Yunlong & Ma, Chizhen & Sun, Hongren & Ren, Wei & Wang, Xianguo, 2023. "Maximizing the water productivity and economic returns of alfalfa by deficit irrigation in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Yu Xiao & Gaodi Xie & Chunxia Lu & Changshun Zhang & Jie Xu & Jingya Liu & Keyu Qin & Yiqiu Li & Chaoxuan Xu & Caixia Zhang & Yangyang Wang & Shuang Gan & Jia Liu & Liqiang Ge, 2021. "Suggestions for Revegetation over the Next 30 Years Based on Precipitation in the Three North Region of China," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    12. Song, Lining & Zhu, Jiaojun & Zheng, Xiao & Li, Xinjunyan & Wang, Kai & Zhang, Jinxin & Wang, Guochen & Sun, Haihong, 2023. "Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China," Agricultural Water Management, Elsevier, vol. 275(C).
    13. Zheng, Xiao & Zhu, Jiaojun & Xing, Zefeng, 2016. "Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China," Agricultural Systems, Elsevier, vol. 143(C), pages 49-60.
    14. Wang, Linlin & Xie, Junhong & Luo, Zhuzhu & Niu, Yining & Coulter, Jeffrey A. & Zhang, Renzhi & Lingling, Li, 2021. "Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 243(C).
    15. Marko Vuković & Slaven Jurić & Luna Maslov Bandić & Branka Levaj & Da-Qi Fu & Tomislav Jemrić, 2022. "Sustainable Food Production: Innovative Netting Concepts and Their Mode of Action on Fruit Crops," Sustainability, MDPI, vol. 14(15), pages 1-31, July.
    16. Zihe, Liu & Guodong, Jia & Xinxiao, Yu & Weiwei, Lu & Libo, Sun & Yusong, Wang & Baheti, Zierdie, 2021. "Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region," Agricultural Water Management, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000718. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.