IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12278-d673792.html
   My bibliography  Save this article

Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications

Author

Listed:
  • Katja Witte

    (Wuppertal Institute for Climate, Environment and Energy, Division Future Energy and Industry Systems, Doeppersberg 19, 42103 Wuppertal, Germany)

Abstract

To limit global warming, the use of carbon capture and storage technologies (CCS) is considered to be of major importance. In addition to the technical–economic, ecological and political aspects, the question of social acceptance is a decisive factor for the implementation of such low-carbon technologies. This study is the first literature review addressing the acceptance of industrial CCS (iCCS). In contrast to electricity generation, the technical options for large-scale reduction of CO 2 emissions in the energy-intensive industry sector are not sufficient to achieve the targeted GHG neutrality in the industrial sector without the use of CCS. Therefore, it will be crucial to determine which factors influence the acceptance of iCCS and how these findings can be used for policy and industry decision-making processes. The results show that there has been limited research on the acceptance of iCCS. In addition, the study highlights some important differences between the acceptance of iCCS and CCS. Due to the technical diversity of future iCCS applications, future acceptance research must be able to better address the complexity of the research subject.

Suggested Citation

  • Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12278-:d:673792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Linghong & Wang, Jingguo & You, Jianxin, 2015. "Consumer environmental awareness and channel coordination with two substitutable products," European Journal of Operational Research, Elsevier, vol. 241(1), pages 63-73.
    2. Hope, Aimie L.B. & Jones, Christopher R., 2014. "The impact of religious faith on attitudes to environmental issues and Carbon Capture and Storage (CCS) technologies: A mixed methods study," Technology in Society, Elsevier, vol. 38(C), pages 48-59.
    3. Broecks, Kevin P.F. & van Egmond, Sander & van Rijnsoever, Frank J. & Verlinde-van den Berg, Marlies & Hekkert, Marko P., 2016. "Persuasiveness, importance and novelty of arguments about Carbon Capture and Storage," Environmental Science & Policy, Elsevier, vol. 59(C), pages 58-66.
    4. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    5. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    6. David C. Warren & Sanya R. Carley & Rachel M. Krause & John A. Rupp & John D. Graham, 2014. "Predictors of attitudes toward carbon capture and storage using data on world views and CCS-specific attitudes," Science and Public Policy, Oxford University Press, vol. 41(6), pages 821-834.
    7. Lock, Simon J. & Smallman, Melanie & Lee, Maria & Rydin, Yvonne, 2014. "“Nuclear energy sounded wonderful 40 years ago”: UK citizen views on CCS," Energy Policy, Elsevier, vol. 66(C), pages 428-435.
    8. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    9. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    10. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    11. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    12. Offermann-van Heek, Julia & Arning, Katrin & Sternberg, André & Bardow, André & Ziefle, Martina, 2020. "Assessing public acceptance of the life cycle of CO2-based fuels: Does information make the difference?," Energy Policy, Elsevier, vol. 143(C).
    13. Michael Siegrist & George Cvetkovich & Claudia Roth, 2000. "Salient Value Similarity, Social Trust, and Risk/Benefit Perception," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 353-362, June.
    14. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    15. Alessandro Liberati & Douglas G Altman & Jennifer Tetzlaff & Cynthia Mulrow & Peter C Gøtzsche & John P A Ioannidis & Mike Clarke & P J Devereaux & Jos Kleijnen & David Moher, 2009. "The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-28, July.
    16. Kraeusel, Jonas & Möst, Dominik, 2012. "Carbon Capture and Storage on its way to large-scale deployment: Social acceptance and willingness to pay in Germany," Energy Policy, Elsevier, vol. 49(C), pages 642-651.
    17. Peter van Os, 2018. "Accelerating low carbon industrial growth through carbon capture, utilization and storage (CCUS)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 994-997, December.
    18. Kohko Tokushige & Keigo Akimoto & Toshimasa Tomoda, 2007. "Public acceptance and risk-benefit perception of CO 2 geological storage for global warming mitigation in Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1237-1251, August.
    19. Bart W. Terwel, 2015. "Public participation under conditions of distrust: invited commentary on 'Effective risk communication and CCS: The road to success in Europe'," Journal of Risk Research, Taylor & Francis Journals, vol. 18(6), pages 692-694, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanouela Leventaki & Francisco M. Baena-Moreno & Gaetano Sardina & Henrik Ström & Ebrahim Ghahramani & Shirin Naserifar & Phuoc Hoang Ho & Aleksandra M. Kozlowski & Diana Bernin, 2022. "In-Line Monitoring of Carbon Dioxide Capture with Sodium Hydroxide in a Customized 3D-Printed Reactor without Forced Mixing," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    2. Viktorija Terjanika & Jelena Pubule, 2022. "Barriers and Driving Factors for Sustainable Development of CO 2 Valorisation," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    3. Strasmann, Yannick & Große-Kreul, Felix & Kretzer, Michael & Altstadt, Laura & Reichmann, Aileen & Weber, Nora & Witte, Katja & Freier, Nora & Kränke, Lisa & Patzwahl, Rosa, 2023. "Wie beeinflussen Protestbewegungen die öffentliche Akzeptanz von Technologien für die Industrietransformation in NRW? Ein exploratives Protest-Akzeptanz-Modell," Wuppertal Papers 201, Wuppertal Institute for Climate, Environment and Energy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    2. Hurlbert, Margot & Osazuwa-Peters, Mac, 2023. "Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    4. Yu, H. & Reiner, D. & Chen, H. & Mi, Z., 2018. "A comparison of public preferences for different low-carbon energy technologies: Support for CCS, nuclear and wind energy in the United Kingdom," Cambridge Working Papers in Economics 1826, Faculty of Economics, University of Cambridge.
    5. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    6. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    7. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    8. Valentina Kashintseva & Wadim Strielkowski & Justas Streimikis & Tatiana Veynbender, 2018. "Consumer Attitudes towards Industrial CO 2 Capture and Storage Products and Technologies," Energies, MDPI, vol. 11(10), pages 1-14, October.
    9. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    10. Carola Braun, 2017. "Not in My Backyard: CCS Sites and Public Perception of CCS," Risk Analysis, John Wiley & Sons, vol. 37(12), pages 2264-2275, December.
    11. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    12. Danny Otto & Marit Sprenkeling & Ruben Peuchen & Åsta Dyrnes Nordø & Dimitrios Mendrinos & Spyridon Karytsas & Siri Veland & Olympia Polyzou & Martha Lien & Yngve Heggelund & Matthias Gross & Pim Piek, 2022. "On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO 2 Storage Monitoring Systems," Energies, MDPI, vol. 15(15), pages 1-22, August.
    13. Arning, K. & Offermann-van Heek, J. & Ziefle, M., 2021. "What drives public acceptance of sustainable CO2-derived building materials? A conjoint-analysis of eco-benefits vs. health concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Farid Karimi, 2021. "Stakeholders’ Risk Perceptions of Decarbonised Energy System: Insights into Patterns of Behaviour," Energies, MDPI, vol. 14(21), pages 1-14, November.
    15. L׳Orange Seigo, Selma & Dohle, Simone & Siegrist, Michael, 2014. "Public perception of carbon capture and storage (CCS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 848-863.
    16. Linzenich, Anika & Arning, Katrin & Ziefle, Martina, 2021. "Acceptance of energy technologies in context: Comparing laypeople's risk perceptions across eight infrastructure technologies in Germany," Energy Policy, Elsevier, vol. 152(C).
    17. Liu, Bingsheng & Xu, Yinghua & Yang, Yang & Lu, Shijian, 2021. "How public cognition influences public acceptance of CCUS in China: Based on the ABC (affect, behavior, and cognition) model of attitudes," Energy Policy, Elsevier, vol. 156(C).
    18. Johanna Pfeiffer & Andreas Gabriel & Markus Gandorfer, 2021. "Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(1), pages 107-128, February.
    19. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Xexakis, Georgios & Hansmann, Ralph & Volken, Sandra P. & Trutnevyte, Evelina, 2020. "Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12278-:d:673792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.