IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1335-d1608184.html
   My bibliography  Save this article

Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO 2

Author

Listed:
  • Radosław Tarkowski

    (Mineral and Energy Economy Research Institute, Polish Academy of Sciences, J. Wybickiego 7A, 31-261 Krakow, Poland)

  • Barbara Uliasz-Misiak

    (Faculty of Drilling, Oil and Gas, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

The successful commercialisation of underground hydrogen storage (UHS) is contingent upon technological readiness and social acceptance. A lack of social acceptance, inadequate policies/regulations, an unreliable business case, and environmental uncertainty have the potential to delay or prevent UHS commercialisation, even in cases where it is ready. The technologies utilised for underground hydrogen and carbon dioxide storage are analogous. The differences lie in the types of gases stored and the purpose of their storage. It is anticipated that the challenges related to public acceptance will be analogous in both cases. An assessment was made of the possibility of transferring experiences related to the social acceptance of CO 2 sequestration to UHS based on an analysis of relevant articles from indexed journals. The analysis enabled the identification of elements that can be used and incorporated into the social acceptance of UHS. A framework was identified that supports the assessment and implementation of factors determining social acceptance, ranging from conception to demonstration to implementation. These factors include education, communication, stakeholder involvement, risk assessment, policy and regulation, public trust, benefits, research and demonstration programmes, and social embedding. Implementing these measures has the potential to increase acceptance and facilitate faster implementation of this technology.

Suggested Citation

  • Radosław Tarkowski & Barbara Uliasz-Misiak, 2025. "Public Acceptance of the Underground Storage of Hydrogen: Lessons Learned from the Geological Storage of CO 2," Energies, MDPI, vol. 18(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1335-:d:1608184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Marit Sprenkeling & Tara Geerdink & Adriaan Slob & Amber Geurts, 2022. "Bridging Social and Technical Sciences: Introduction of the Societal Embeddedness Level," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Minh Ha-Duong & Ana Sofia Campos & Alain Nadaï, 2007. "A survey on the public perception of CCS in France," Working Papers hal-00866557, HAL.
    5. Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    6. Terre Satterfield & Sara Nawaz & Guillaume Peterson St-Laurent, 2023. "Exploring public acceptability of direct air carbon capture with storage: climate urgency, moral hazards and perceptions of the ‘whole versus the parts’," Climatic Change, Springer, vol. 176(2), pages 1-21, February.
    7. Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
    8. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    9. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    10. Kohko Tokushige & Keigo Akimoto & Toshimasa Tomoda, 2007. "Public acceptance and risk-benefit perception of CO 2 geological storage for global warming mitigation in Japan," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(7), pages 1237-1251, August.
    11. Elena Vechkinzova & Larissa P. Steblyakova & Natalia Roslyakova & Balnur Omarova, 2022. "Prospects for the Development of Hydrogen Energy: Overview of Global Trends and the Russian Market State," Energies, MDPI, vol. 15(22), pages 1-29, November.
    12. Dimitrios Mendrinos & Spyridon Karytsas & Olympia Polyzou & Constantine Karytsas & Åsta Dyrnes Nordø & Kirsti Midttømme & Danny Otto & Matthias Gross & Marit Sprenkeling & Ruben Peuchen & Tara Geerdin, 2022. "Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies," Clean Technol., MDPI, vol. 4(4), pages 1-15, September.
    13. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    14. Terje Aven, 2011. "On Some Recent Definitions and Analysis Frameworks for Risk, Vulnerability, and Resilience," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 515-522, April.
    15. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    16. Shackley, Simon & Mander, Sarah & Reiche, Alexander, 2006. "Public perceptions of underground coal gasification in the United Kingdom," Energy Policy, Elsevier, vol. 34(18), pages 3423-3433, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    3. Danny Otto & Marit Sprenkeling & Ruben Peuchen & Åsta Dyrnes Nordø & Dimitrios Mendrinos & Spyridon Karytsas & Siri Veland & Olympia Polyzou & Martha Lien & Yngve Heggelund & Matthias Gross & Pim Piek, 2022. "On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO 2 Storage Monitoring Systems," Energies, MDPI, vol. 15(15), pages 1-22, August.
    4. Carola Braun & Christine Merk & Gert Pönitzsch & Katrin Rehdanz & Ulrich Schmidt, 2018. "Public perception of climate engineering and carbon capture and storage in Germany: survey evidence," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 471-484, April.
    5. Katarzyna Luboń & Radosław Tarkowski & Barbara Uliasz-Misiak, 2024. "Impact of Depth on Underground Hydrogen Storage Operations in Deep Aquifers," Energies, MDPI, vol. 17(6), pages 1-14, March.
    6. Katarzyna Luboń & Radosław Tarkowski, 2024. "Hydrogen Storage in Deep Saline Aquifers: Non-Recoverable Cushion Gas after Storage," Energies, MDPI, vol. 17(6), pages 1-17, March.
    7. Konstantin Gomonov & Marina Reshetnikova & Svetlana Ratner, 2023. "Economic Analysis of Recently Announced Green Hydrogen Projects in Russia: A Multiple Case Study," Energies, MDPI, vol. 16(10), pages 1-15, May.
    8. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    9. Tryfonas Pieri & Alexandros Nikitas & Athanasios Angelis-Dimakis, 2023. "Public Acceptance and Willingness to Pay for Carbon Capture and Utilisation Products," Clean Technol., MDPI, vol. 5(1), pages 1-15, March.
    10. Yang, Lin & Zhang, Xian & McAlinden, Karl J., 2016. "The effect of trust on people's acceptance of CCS (carbon capture and storage) technologies: Evidence from a survey in the People's Republic of China," Energy, Elsevier, vol. 96(C), pages 69-79.
    11. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    12. Muhammad Ridhuan Tony Lim Abdullah & Saedah Siraj & Zulkipli Ghazali, 2021. "An ISM Approach for Managing Critical Stakeholder Issues Regarding Carbon Capture and Storage (CCS) Deployment in Developing Asian Countries," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    13. Jesús Rey & Francisca Segura & José Manuel Andújar, 2023. "Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework," Energies, MDPI, vol. 16(17), pages 1-29, August.
    14. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    15. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    16. Ladenburg, Jacob & Kim, Jiwon & Zuch, Matteo & Soytas, Ugur, 2024. "Taking the carbon capture and storage, wind power, PV or other renewable technology path to fight climate change? Exploring the acceptance of climate change mitigation technologies – A Danish national," Renewable Energy, Elsevier, vol. 220(C).
    17. Huaguang Yan & Wenda Zhang & Jiandong Kang & Tiejiang Yuan, 2023. "The Necessity and Feasibility of Hydrogen Storage for Large-Scale, Long-Term Energy Storage in the New Power System in China," Energies, MDPI, vol. 16(13), pages 1-21, June.
    18. Zhu, Shijie & Shi, Xilin & Yang, Chunhe & Li, Yinping & Li, Hang & Yang, Kun & Wei, Xinxing & Bai, Weizheng & Liu, Xin, 2023. "Hydrogen loss of salt cavern hydrogen storage," Renewable Energy, Elsevier, vol. 218(C).
    19. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    20. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1335-:d:1608184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.