IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12263-d673587.html
   My bibliography  Save this article

Agave and Opuntia Species as Sustainable Feedstocks for Bioenergy and Byproducts

Author

Listed:
  • José Amador Honorato-Salazar

    (Campo Experimental San Martinito, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Carretera Federal Mexico-Puebla Km 56.5, Santa Rita Tlahuapan, Puebla 74100, Mexico)

  • Jorge Aburto

    (Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico)

  • Myriam Adela Amezcua-Allieri

    (Gerencia de Transformación de Biomasa, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Colonia San Bartolo Atepehuacan, Mexico City 07730, Mexico)

Abstract

Currently, Mexico is facing an energy transition, therefore updated policy regulations pertaining to the sustainable use of biomass are needed. In particular, policy that favors the sustainable use of biomass to produce energy and bioproducts to privilege climate change mitigation is needed. This review describes the use of maguey ( Agave spp.) and nopal ( Opuntia spp.; also known as “cactus”) for biofuel production, especially in marginal areas. Emphasis is given on documented case studies discussing features of production and cultivation for both maguey and nopal, in addition to their potential for fuel production. Environmental and social sustainability issues in terms of waste value and new opportunities as bioenergy feedstocks and byproducts are also discussed. Although the paper does not deeply describe aspects of biomass transformation, such as bioprocess configurations, it gives characteristics of production in addition to cultivation. Agave and Opuntia species may represent a suitable feedstock for biofuels, bioproducts, bioenergy and biorefineries, especially in dry lands (semi-arid and dry sub-humid), deforested areas, agroforestry systems and agricultural semi-terraces known as metepantle in Mexico.

Suggested Citation

  • José Amador Honorato-Salazar & Jorge Aburto & Myriam Adela Amezcua-Allieri, 2021. "Agave and Opuntia Species as Sustainable Feedstocks for Bioenergy and Byproducts," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12263-:d:673587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. García, Carlos A. & Manzini, Fabio & Islas, Jorge M., 2017. "Sustainability assessment of ethanol production from two crops in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1199-1207.
    2. repec:eco:journ2:2017-04-22 is not listed on IDEAS
    3. Láinez, Magdiel & Ruiz, Héctor A. & Arellano-Plaza, Melchor & Martínez-Hernández, Sergio, 2019. "Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus," Renewable Energy, Elsevier, vol. 138(C), pages 1127-1133.
    4. Avery S. Cohn & Leah K. VanWey & Stephanie A. Spera & John F. Mustard, 2016. "Cropping frequency and area response to climate variability can exceed yield response," Nature Climate Change, Nature, vol. 6(6), pages 601-604, June.
    5. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    2. Koffi Ekouevi & Voravate Tuntivate, 2012. "Household Energy Access for Cooking and Heating : Lessons Learned and the Way Forward," World Bank Publications - Books, The World Bank Group, number 9372.
    3. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    5. Atreyi Pramanik & Aashna Sinha & Kundan Kumar Chaubey & Sujata Hariharan & Deen Dayal & Rakesh Kumar Bachheti & Archana Bachheti & Anuj K. Chandel, 2023. "Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    6. Hildegart Ahumada & Magdalena Cornejo, 2019. "How econometrics can help us understand the effects of climate change on crop yields: the case of soybeans," School of Government Working Papers wp_gob_2019_2, Universidad Torcuato Di Tella.
    7. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.
    8. Ujjayant Chakravorty & Marie‐Hélène Hubert & Michel Moreaux & Linda Nøstbakken, 2017. "Long‐Run Impact of Biofuels on Food Prices," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 733-767, July.
    9. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    10. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    11. Lorenzo Di Lucia & Barbara Ribeiro, 2018. "Enacting Responsibilities in Landscape Design: The Case of Advanced Biofuels," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    12. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Bosello, Francesco & Davide, Marinella & Alloisio, Isabella, 2016. "Economic Implications of EU Mitigation Policies: Domestic and International Effects," EIA: Climate Change: Economic Impacts and Adaptation 234938, Fondazione Eni Enrico Mattei (FEEM).
    14. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    15. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    16. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Increasing microalgal carbohydrate content for hydrothermal gasification purposes," Renewable Energy, Elsevier, vol. 116(PA), pages 710-719.
    17. Shen, Ge & Yu, Qiangyi & Zhou, Qingbo & Wang, Cong & Wu, Wenbin, 2023. "From multiple cropping frequency to multiple cropping system: A new perspective for the characterization of cropland use intensity," Agricultural Systems, Elsevier, vol. 204(C).
    18. Christopher N. Boyer & Eunchun Park & Seong D. Yun, 2023. "Corn and soybean prevented planting acres response to weather," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 970-983, June.
    19. Lopes, Daniela de Carvalho & Steidle Neto, Antonio José & Mendes, Adriano Aguiar & Pereira, Débora Tamires Vítor, 2013. "Economic feasibility of biodiesel production from Macauba in Brazil," Energy Economics, Elsevier, vol. 40(C), pages 819-824.
    20. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12263-:d:673587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.