IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11274-d654915.html
   My bibliography  Save this article

Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security

Author

Listed:
  • John D. Graham

    (O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47404, USA)

  • John A. Rupp

    (O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47404, USA)

  • Eva Brungard

    (O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47404, USA)

Abstract

Considering the quest to meet both sustainable development and energy security goals, we explore the ramifications of explosive growth in the global demand for lithium to meet the needs for batteries in plug-in electric vehicles and grid-scale energy storage. We find that heavy dependence on lithium will create energy security risks because China has a dominant position in the lithium supply chain and both Europe and North America seek to curtail reliance on China throughout their supply chains. We also find that efforts to expand lithium mining have been much less successful in Chile, the United States, and Europe than in Australia. Local communities resist licensing of new lithium mines due to a variety of environmental, social, and economic concerns. There are alternative technologies that may make lithium mining more sustainable such as direct lithium extraction, but the timing of commercialization of this process is uncertain. Progress is also being made in battery recycling and in alternative battery designs that do not use lithium. Such advances are unlikely to attenuate the global rate of growth in lithium demand prior to 2030. We conclude that tradeoffs between sustainability and energy security are real, especially in the next decade.

Suggested Citation

  • John D. Graham & John A. Rupp & Eva Brungard, 2021. "Lithium in the Green Energy Transition: The Quest for Both Sustainability and Security," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11274-:d:654915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11274/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11274/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Speirs, Jamie & Contestabile, Marcello & Houari, Yassine & Gross, Robert, 2014. "The future of lithium availability for electric vehicle batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 183-193.
    2. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    3. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    4. Yingyi Huang & Mahdokht Shaibani & Tanesh D. Gamot & Mingchao Wang & Petar Jovanović & M. C. Dilusha Cooray & Meysam Sharifzadeh Mirshekarloo & Roger J. Mulder & Nikhil V. Medhekar & Matthew R. Hill &, 2021. "A saccharide-based binder for efficient polysulfide regulations in Li-S batteries," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Qi, Yabin & Wang, Ze & Jia, Nanfei & Chen, Zhihua, 2020. "Exploring behavior changes of the lithium market in China: Toward technology-oriented future scenarios," Resources Policy, Elsevier, vol. 69(C).
    6. Peter Greim & A. A. Solomon & Christian Breyer, 2020. "Assessment of lithium criticality in the global energy transition and addressing policy gaps in transportation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz Paz, Walter Fernando & Escosteguy, Melisa & Seghezzo, Lucas & Hufty, Marc & Kruse, Eduardo & Iribarnegaray, Martín Alejandro, 2023. "Lithium mining, water resources, and socio-economic issues in northern Argentina: We are not all in the same boat," Resources Policy, Elsevier, vol. 81(C).
    2. Xingxing Wang & Yujie Zhang & Hongjun Ni & Shuaishuai Lv & Fubao Zhang & Yu Zhu & Yinnan Yuan & Yelin Deng, 2022. "Influence of Different Ambient Temperatures on the Discharge Performance of Square Ternary Lithium-Ion Batteries," Energies, MDPI, vol. 15(15), pages 1-22, July.
    3. Laene Oliveira Soares & Augusto da Cunha Reis & Pedro Senna Vieira & Luis Hernández-Callejo & Ronney Arismel Mancebo Boloy, 2023. "Electric Vehicle Supply Chain Management: A Bibliometric and Systematic Review," Energies, MDPI, vol. 16(4), pages 1-26, February.
    4. Cheng, Dong & Zhou, Hongqin & Guo, Debing & He, Yingchao, 2024. "Green Knot: trade openness and digital commerce contribute to the natural resources," Resources Policy, Elsevier, vol. 90(C).
    5. Sun, Yanlei & Wang, Siyao & Xing, Zhanlei, 2023. "Do international trade diversification, intellectual capital, and renewable energy transition ensure effective natural resources management in BRICST region," Resources Policy, Elsevier, vol. 81(C).
    6. Ozturk, Ilhan & Razzaq, Asif & Sharif, Arshian & Yu, Zhengsen, 2023. "Investigating the impact of environmental governance, green innovation, and renewable energy on trade-adjusted material footprint in G20 countries," Resources Policy, Elsevier, vol. 86(PA).
    7. Xiong, Su & Luo, Rong, 2023. "Investigating the relationship between digital trade, natural resources, energy transition, and green productivity: Moderating role of R&D investment," Resources Policy, Elsevier, vol. 86(PB).
    8. David R. Mares, 2022. "Understanding Cartel Viability: Implications for a Latin American Lithium Suppliers Agreement," Energies, MDPI, vol. 15(15), pages 1-26, July.
    9. Elsayed Mousa & Xianfeng Hu & Ludvig Ånnhagen & Guozhu Ye & Antonella Cornelio & Ario Fahimi & Elza Bontempi & Patrizia Frontera & Charlotte Badenhorst & Ana Cláudia Santos & Karen Moreira & Alexandra, 2022. "Characterization and Thermal Treatment of the Black Mass from Spent Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    10. Costin Radu Boldea & Bogdan Ion Boldea & Tiberiu Iancu, 2023. "The Pandemic Waves’ Impact on the Crude Oil Price and the Rise of Consumer Price Index: Case Study for Six European Countries," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    11. Jiehui Yuan & Zhihong Liu & Ting Zhou & Xiaoming Tang & Juan Yuan & Wenli Yuan, 2023. "Sustainable Development of Lithium-Based New Energy in China from an Industry Chain Perspective: Risk Analysis and Policy Implications," Sustainability, MDPI, vol. 15(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    2. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    3. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    4. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    5. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    7. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    8. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    9. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    10. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    11. Ren, Zhijun & Li, Huajie & Yan, Wenyi & Lv, Weiguang & Zhang, Guangming & Lv, Longyi & Sun, Li & Sun, Zhi & Gao, Wenfang, 2023. "Comprehensive evaluation on production and recycling of lithium-ion batteries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Yun Zhang & Louise Rysiecki & Yu Gong & Qi Shi, 2020. "A SWOT Analysis of the UK EV Battery Supply Chain," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    13. Monge, Manuel & Gil-Alana, Luis A., 2019. "Automobile components: Lithium and cobalt. Evidence of persistence," Energy, Elsevier, vol. 169(C), pages 489-495.
    14. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    15. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    16. Zeng, Xianlai & Li, Jinhui & Liu, Lili, 2015. "Solving spent lithium-ion battery problems in China: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1759-1767.
    17. Ibarra-Gutiérrez, Sebastián & Bouchard, Jocelyn & Laflamme, Marcel & Fytas, Konstantinos, 2021. "Assessing the potential of quebec lithium industry: Mineral reserves, lithium-ion batteries production and greenhouse gas emissions," Resources Policy, Elsevier, vol. 74(C).
    18. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    19. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    20. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11274-:d:654915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.