IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i1p361-d474059.html
   My bibliography  Save this article

Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion

Author

Listed:
  • Andreas Nikiforiadis

    (Department of Transportation and Hydraulic Engineering, Faculty of Engineering, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Socrates Basbas

    (Department of Transportation and Hydraulic Engineering, Faculty of Engineering, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Foteini Mikiki

    (Department of Surveying and Geoinformatics Engineering, Serres Campus, Hellenic International University, 62124 Serres, Greece)

  • Aikaterini Oikonomou

    (Department of Surveying and Geoinformatics Engineering, Serres Campus, Hellenic International University, 62124 Serres, Greece)

  • Efrosyni Polymeroudi

    (Department of Surveying and Geoinformatics Engineering, Serres Campus, Hellenic International University, 62124 Serres, Greece)

Abstract

Pedestrians–cyclists shared spaces, sidewalks and streets are now a commonly implemented urban design solution in many cities, due to the willingness to promote sustainable mobility and the non-availability of public space. The proper design and management of these infrastructures requires an accurate evaluation of their performance. The most dominant evaluation metric is the level of service (LOS) and various methodologies have been proposed in the literature for its assessment in infrastructures that are being used by pedestrians, cyclists or by both of these two types of users. The present paper gathers and presents various methodologies, and it applies some of them on two pedestrians-cyclists shared spaces in a medium-sized city in Greece. The outcomes of the methodologies are being compared both among themselves and in relation to the opinions of the users, who participated in a questionnaire survey. The review of the literature, along with the application of some of the methodologies, leads to a fruitful discussion, which sets the groundwork for future research in the field of LOS and it also assists practitioners in selecting the appropriate methodologies for the assessment of pedestrian–cyclists shared spaces.

Suggested Citation

  • Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:361-:d:474059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/1/361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/1/361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    2. Bai, Lu & Liu, Pan & Chan, Ching-Yao & Li, Zhibin, 2017. "Estimating level of service of mid-block bicycle lanes considering mixed traffic flow," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 203-217.
    3. Zohreh Asadi-Shekari & Mehdi Moeinaddini & Muhammad Zaly Shah, 2013. "Non-motorised Level of Service: Addressing Challenges in Pedestrian and Bicycle Level of Service," Transport Reviews, Taylor & Francis Journals, vol. 33(2), pages 166-194, March.
    4. Wei Wang & Zhentian Sun & Liya Wang & Shanshan Yu & Jun Chen, 2020. "Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    5. Mingzhu Song & Kaiping Wang & Yi Zhang & Meng Li & He Qi & Yi Zhang, 2020. "Impact Evaluation of Bike-Sharing on Bicycling Accessibility," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tufail Ahmed & Mehdi Moeinaddini & Meshal Almoshaogeh & Arshad Jamal & Imran Nawaz & Fawaz Alharbi, 2021. "A New Pedestrian Crossing Level of Service (PCLOS) Method for Promoting Safe Pedestrian Crossing in Urban Areas," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    2. Kyriakos Ketikidis & Apostolos Papagiannakis & Socrates Basbas, 2023. "Identifying and Modeling the Factors That Affect Bicycle Users’ Satisfaction," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    3. Chrysanthi Mastora & Evangelos Paschalidis & Andreas Nikiforiadis & Socrates Basbas, 2023. "Pedestrian Crossings as a Means of Reducing Conflicts between Cyclists and Pedestrians in Shared Spaces," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    4. Mimica R. Milošević & Miloš M. Nikolić & Dušan M. Milošević & Violeta Dimić, 2022. "Managing Resources Based on Influential Indicators for Sustainable Economic Development: A Case Study in Serbia," Sustainability, MDPI, vol. 14(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    2. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    3. Siying Zhu & Feng Zhu, 2020. "Multi-objective bike-way network design problem with space–time accessibility constraint," Transportation, Springer, vol. 47(5), pages 2479-2503, October.
    4. Yang Bian & Ling Li & Huan Zhang & Dandan Xu & Jian Rong & Jiachuan Wang, 2021. "Categorizing Bicycling Environment Quality Based on Mobile Sensor Data and Bicycle Flow Data," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    5. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    6. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    7. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    8. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    9. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    10. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    11. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    12. Vallejo-Borda, Jose Agustin & Barchelot-Aceros, Laura Juliana & Barrero, German A. & Ortiz-Ramirez, Hernan Alberto & Pabón-Poches, Daysy Katherine & Silva-Fernández, Claudia Susana, 2023. "Addressing pedestrian perceived externalities influenced by motor vehicles: A perspective from curb space typologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    13. Sheila Ferrer & Tomás Ruiz, 2017. "Comparison on travel scheduling between driving and walking trips by habitual car users," Transportation, Springer, vol. 44(1), pages 27-48, January.
    14. Liguo Lou & Lin Li & Sung-Byung Yang & Joon Koh, 2021. "Promoting User Participation of Shared Mobility in the Sharing Economy: Evidence from Chinese Bike Sharing Services," Sustainability, MDPI, vol. 13(3), pages 1-17, February.
    15. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    16. Diletta Antenucci & Gioia Caldarelli, 2022. "Debt advice for consumers: nature, European debate and implications for Italy," Questioni di Economia e Finanza (Occasional Papers) 740, Bank of Italy, Economic Research and International Relations Area.
    17. Ehsan Nateghinia & David Beitel & Asad Lesani & Luis F. Miranda-Moreno, 2024. "A LiDAR-based methodology for monitoring and collecting microscopic bicycle flow parameters on bicycle facilities," Transportation, Springer, vol. 51(1), pages 129-153, February.
    18. Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
    19. Mingzhu Song & Yi Zhang & Meng Li & Yi Zhang, 2021. "Accessibility of Transit Stops with Multiple Feeder Modes: Walking and Private-Bike Cycling," Sustainability, MDPI, vol. 13(6), pages 1-27, March.
    20. Fan, Zhang & Yanjie, Ji & Huitao, Lv & Yuqian, Zhang & Blythe, Phil & Jialiang, Fan, 2022. "Travel satisfaction of delivery electric two-wheeler riders: Evidence from Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 253-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:1:p:361-:d:474059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.