IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7578-d413487.html
   My bibliography  Save this article

Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts

Author

Listed:
  • Wei Wang

    (School of Transportation, Southeast University, Jiangning District, Nanjing 210096, China)

  • Zhentian Sun

    (Research Institute of Highway, Ministry of Transport, China, No. 8 Xitucheng, Haidian, Beijing 100088, China)

  • Liya Wang

    (School of Transportation, Southeast University, No. 2 Southeast University Road, Nanjing 211189, China)

  • Shanshan Yu

    (School of Transportation, Southeast University, No. 2 Southeast University Road, Nanjing 211189, China)

  • Jun Chen

    (School of Transportation, Southeast University, Jiangning District, Nanjing 210096, China)

Abstract

As a product of urban motorized traffic, sharing roads between pedestrians and non-motor vehicles has been widely used in the world. In order to improve the service quality of slow traffic, it is necessary to evaluate the service level of the shared-use path to determine whether the road is suitable for setting up shared forms. Therefore, the purpose of this study is to provide an analytical framework to quantify and accurately express the service level of shared-use paths. Considering the direct impact of traffic conflicts on service quality, fuzzy clustering analysis is used to analyze traffic conflicts. Then, the corresponding relationship between traffic conflict events and service levels is established, and the classification criteria of the service levels at all levels and the corresponding range of conflict events are determined. By judging the interval in which the number of conflict events belongs, we can determine the service level of the shared-use path, and then determine whether the slow-moving road is suitable for sharing between pedestrians and non-motor vehicles. The research results can provide a reference for traffic management departments to determine the service level and applicability of shared roads.

Suggested Citation

  • Wei Wang & Zhentian Sun & Liya Wang & Shanshan Yu & Jun Chen, 2020. "Evaluation Model for the Level of Service of Shared-Use Paths Based on Traffic Conflicts," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7578-:d:413487
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khashayar Kazemzadeh & Aliaksei Laureshyn & Lena Winslott Hiselius & Enrico Ronchi, 2020. "Expanding the Scope of the Bicycle Level-of-Service Concept: A Review of the Literature," Sustainability, MDPI, vol. 12(7), pages 1-30, April.
    2. Griswold, Julia B. & Yu, Mengqiao & Filingeri, Victoria & Grembek, Offer & Walker, Joan L., 2018. "A behavioral modeling approach to bicycle level of service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 166-177.
    3. Dan Zhao & Shengrui Zhang & Bei Zhou & Shuaiyang Jiao & Ling Yang, 2020. "Risk Perception Sensitivity of Cyclists Based on the Cox Risk Perception Model," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Bian & Ling Li & Huan Zhang & Dandan Xu & Jian Rong & Jiachuan Wang, 2021. "Categorizing Bicycling Environment Quality Based on Mobile Sensor Data and Bicycle Flow Data," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    2. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    3. Viacheslav Morozov & Sergei Iarkov, 2021. "Formation of the Traffic Flow Rate under the Influence of Traffic Flow Concentration in Time at Controlled Intersections in Tyumen, Russian Federation," Sustainability, MDPI, vol. 13(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiao & Zhang, Tianyu & Xie, Meiquan & Jia, Xudong, 2021. "Analyzing bicycle level of service using virtual reality and deep learning technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 115-129.
    2. Alvaro Rodriguez-Valencia & Jose Agustin Vallejo-Borda & German A. Barrero & Hernan Alberto Ortiz-Ramirez, 2022. "Towards an enriched framework of service evaluation for pedestrian and bicyclist infrastructure: acknowledging the power of users’ perceptions," Transportation, Springer, vol. 49(3), pages 791-814, June.
    3. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    4. Andreas Nikiforiadis & Socrates Basbas & Foteini Mikiki & Aikaterini Oikonomou & Efrosyni Polymeroudi, 2021. "Pedestrians-Cyclists Shared Spaces Level of Service: Comparison of Methodologies and Critical Discussion," Sustainability, MDPI, vol. 13(1), pages 1-19, January.
    5. Arellana, Julián & Saltarín, María & Larrañaga, Ana Margarita & González, Virginia I. & Henao, César Augusto, 2020. "Developing an urban bikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 310-334.
    6. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    7. Rafael Hologa & Nils Riach, 2020. "Approaching Bike Hazards via Crowdsourcing of Volunteered Geographic Information," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    8. Gabriella Mazzulla & Maria Grazia Bellizzi & Laura Eboli & Carmen Forciniti, 2021. "Cycling for a Sustainable Touristic Mobility: A Preliminary Study in an Urban Area of Italy," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    9. Cabral, Laura & Kim, Amy M., 2020. "An empirical reappraisal of the four types of cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 206-221.
    10. Xiaofei Ye & Yi Zhu & Tao Wang & Xingchen Yan & Jun Chen & Bin Ran, 2022. "Level of Service Model of the Non-Motorized Vehicle Crossing the Signalized Intersection Based on Riders’ Perception Data," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    11. S. Van Cranenburgh & S. Wang & A. Vij & F. Pereira & J. Walker, 2021. "Choice modelling in the age of machine learning -- discussion paper," Papers 2101.11948, arXiv.org, revised Nov 2021.
    12. Dudziak Agnieszka & Caban Jacek, 2021. "Organization of Urban Transport Organization – Presentation of Bicycle System and Bicycle Infrastructure in Lublin," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 12(1), pages 36-45, May.
    13. Bi, Hui & Li, Aoyong & Zhu, He & Ye, Zhirui, 2023. "Bicycle safety outside the crosswalks: Investigating cyclists' risky street-crossing behavior and its relationship with built environment," Journal of Transport Geography, Elsevier, vol. 108(C).
    14. Fitch, Dillon T. & Carlen, Jane & Handy, Susan L., 2022. "What makes bicyclists comfortable? Insights from a visual preference survey of casual and prospective bicyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 434-449.
    15. Renata Żochowska & Marianna Jacyna & Marcin Jacek Kłos & Piotr Soczówka, 2021. "A GIS-Based Method of the Assessment of Spatial Integration of Bike-Sharing Stations," Sustainability, MDPI, vol. 13(7), pages 1-29, April.
    16. Yang Bian & Ling Li & Huan Zhang & Dandan Xu & Jian Rong & Jiachuan Wang, 2021. "Categorizing Bicycling Environment Quality Based on Mobile Sensor Data and Bicycle Flow Data," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Jonas Schmid-Querg & Andreas Keler & Georgios Grigoropoulos, 2021. "The Munich Bikeability Index: A Practical Approach for Measuring Urban Bikeability," Sustainability, MDPI, vol. 13(1), pages 1-14, January.
    18. Fitch, Dillon & Carlen, Jane & Handy, Susan, 2020. "Making Bicycling Comfortable: Identifying Minimum Infrastructure Needs by Population Segments Using a Video Survey," Institute of Transportation Studies, Working Paper Series qt7jn8h79x, Institute of Transportation Studies, UC Davis.
    19. Dudziak Agnieszka & Caban Jacek, 2022. "The Urban Transport Strategy on the Example of the City Bike System in the City of Lublin in Relation to the Covid-19 Pandemic," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 1-12, January.
    20. Qiyao Yang & Jun Cai & Tao Feng & Zhengying Liu & Harry Timmermans, 2021. "Bikeway Provision and Bicycle Commuting: City-Level Empirical Findings from the US," Sustainability, MDPI, vol. 13(6), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7578-:d:413487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.