IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10715-d644005.html
   My bibliography  Save this article

Implementation of the New European Bauhaus Principles as a Context for Teaching Sustainable Architecture

Author

Listed:
  • Kajetan Sadowski

    (Faculty of Architecture, Wrocław University of Science and Technology, 50-317 Wrocław, Poland)

Abstract

Due to the presentation of the European Green Deal (EGD) on 11 December 2019, it is important to introduce a new context for the education of architects corresponding to the objectives set by the European Union. These include reducing greenhouse gas emissions, increasing the energy efficiency of buildings, designing buildings in accordance with the principles of the circular economy, using renewable energy, as well as promoting ecological food and protecting biodiversity. As part of the design course Environmentally Friendly Housing Architecture , inspired by, among others, the design of the New European Bauhaus and the former Bauhaus art school, both of which are compared in the first part of this article, we identify a number of new, assessed design indicators related to the achievement of the above objectives, in line with the trend of sustainable architecture. The indicators are divided into four main categories: energy, environment, indoor climate, and society, where, for example, the environmental category includes the following criteria: embodied energy (MJ/m 2 ), embodied carbon footprint (CO 2 eq/m 2 ), use of rainwater and gray water (% of demand), use of mains water (% of demand), local production of vegetables and fruit (% of demand). During the design process, changes were made to achieve better indicators, and the final designs were described using radar charts. The paper presents a statistical summary of the achieved values for individual indicators, the progress achieved, exemplary design solutions, and the assessment of the methodology used. The design course Environmentally Friendly Housing Architecture was assessed by the participants by means of a questionnaire.

Suggested Citation

  • Kajetan Sadowski, 2021. "Implementation of the New European Bauhaus Principles as a Context for Teaching Sustainable Architecture," Sustainability, MDPI, vol. 13(19), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10715-:d:644005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oriol Pons-Valladares & Jelena Nikolic, 2020. "Sustainable Design, Construction, Refurbishment and Restoration of Architecture: A Review," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    2. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
    3. Zhou, Jiangping, 2012. "Sustainable commute in a car-dominant city: Factors affecting alternative mode choices among university students," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1013-1029.
    4. Magdalena Celadyn, 2020. "Integrative Design Classes for Environmental Sustainability of Interior Architectural Design," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    5. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    6. Jeffrey O’Hara & Konstantine Georgakakos, 2008. "Quantifying the Urban Water Supply Impacts of Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1477-1497, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Maria Wierzbicka & Paweł Trębacz & Renata Jóźwik & Magdalena Duda, 2024. "The Conceptualization of a Modular Residential Settlement Project Emerging in a Displacement Situation due to War in the Context of Sustainable Development Requirements," Sustainability, MDPI, vol. 16(14), pages 1-19, July.
    2. Daniel Torchia & Jacopo Fresta & Laura Corazza & Chiara Certomà, 2023. "New European Bauhaus for a Circular Economy and Waste Management: The Lived Experience of a Community Container Garden at the University of Turin," Sustainability, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Zhu & Shuenn-Ren Liou & Pi-Cheng Chen & Xia-Yun He & Meng-Lin Sui, 2024. "Carbon Emissions Reduction of a Circular Architectural Practice: A Study on a Reversible Design Pavilion Using Recycled Materials," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    2. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    3. Jun Guan Neoh & Maxwell Chipulu & Alasdair Marshall, 2017. "What encourages people to carpool? An evaluation of factors with meta-analysis," Transportation, Springer, vol. 44(2), pages 423-447, March.
    4. Chuhan Chen & Syarmila Hany Haron, 2023. "The Influence of Multistakeholder Value Cognition and Risk Attitudes on Sustainable Interior Landscape Design Decisions," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
    5. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    6. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    7. Kelly, J. Andrew & Fu, Miao, 2014. "Sustainable school commuting – understanding choices and identifying opportunities," Journal of Transport Geography, Elsevier, vol. 34(C), pages 221-230.
    8. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    9. Rotaris, Lucia & Danielis, Romeo, 2014. "The impact of transportation demand management policies on commuting to college facilities: A case study at the University of Trieste, Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 127-140.
    10. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    11. Jukka Heinonen & Antti-Juhani Säynäjoki & Matti Kuronen & Seppo Junnila, 2012. "Are the Greenhouse Gas Implications of New Residential Developments Understood Wrongly?," Energies, MDPI, vol. 5(8), pages 1-20, August.
    12. Rotaris, Lucia & Danielis, Romeo, 2015. "Commuting to college: The effectiveness and social efficiency of transportation demand management policies," Transport Policy, Elsevier, vol. 44(C), pages 158-168.
    13. Arefeh Nasri & Lei Zhang, 2019. "How Urban Form Characteristics at Both Trip Ends Influence Mode Choice: Evidence from TOD vs. Non-TOD Zones of the Washington, D.C. Metropolitan Area," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    14. Mojtaba Ashour & Amir Mahdiyar & Syarmila Hany Haron, 2021. "A Comprehensive Review of Deterrents to the Practice of Sustainable Interior Architecture and Design," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    15. Riikka Kyrö & Jukka Heinonen & Antti Säynäjoki & Seppo Junnila, 2012. "Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland," Sustainability, MDPI, vol. 4(7), pages 1-15, July.
    16. Baglivo, Cristina & Congedo, Paolo Maria, 2016. "High performance precast external walls for cold climate by a multi-criteria methodology," Energy, Elsevier, vol. 115(P1), pages 561-576.
    17. Butler, Alex & Sweet, Matthias, 2020. "No free rides: Winners and losers of the proposed Toronto Transit Commission U-Pass program," Transport Policy, Elsevier, vol. 96(C), pages 15-28.
    18. Stephanie MacLeod & Yves Filion, 2012. "Issues and Implications of Carbon-Abatement Discounting and Pricing for Drinking Water System Design in Canada," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 43-61, January.
    19. Minh Hieu Nguyen & Dorina Pojani, 2023. "Why are Hanoi students giving up on bus ridership?," Transportation, Springer, vol. 50(3), pages 811-835, June.
    20. Pradeep Amarasinghe & An Liu & Prasanna Egodawatta & Paul Barnes & James McGree & Ashantha Goonetilleke, 2017. "Modelling Resilience of a Water Supply System under Climate Change and Population Growth Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2885-2898, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10715-:d:644005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.