IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10470-d639706.html
   My bibliography  Save this article

Fabrication of Catalytic Converter with Different Materials and Comparison with Existing Materials in Addition to Analysis of Turbine Installed at the Exhaust of 4 Stroke SI Engine

Author

Listed:
  • Roman Kalvin

    (Energy Technology Program, Faculty of Engineering, Prince of Songkla University Hatyai, Songkhla 90110, Thailand
    Department of Mechanical Engineering, University of Wah, Wah Cantt 47040, Pakistan)

  • Juntakan Taweekun

    (Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University Hatyai, Songkhla 90110, Thailand)

  • Kittinan Maliwan

    (Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University Hatyai, Songkhla 90110, Thailand)

  • Hafiz Muhammad Ali

    (Mechanical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

Harmful pollutants (CO, NO, and unburnt hydrocarbons) coming out from the exhaust manifold of an engine must be converted into harmless gases by using catalytic converter. This field has seen vast research for increasing the conversion efficiency of pollutants by using different cheap metals. Nowadays, catalysts used in catalytic converter are noble metals, and they are also critical in the sense that they are not abundant on Earth. Platinum, palladium and rhodium are very expensive; hence, low-cost cars are not installed with catalytic converter, especially in third world countries. This research has been carried out to assess the catalytic activity of catalysts made from the salt/metal precursors, cerium sulphate tetra hydrate, manganese sulphate mono hydrate and copper sulphate penta hydrate that are not expensive and also less affected by the poison. Test sample catalysts were prepared through a coprecipitation method having different molar concentrations, and then tested for the conversion efficiency by applying the catalysts on ceramic plates by using flue gas analyzer. On the basis of the results, final catalysts were prepared and applied on a monolithic ceramic plate and then tested with regard to the resulting conversion rate of pollutants as compared to already installed catalytic converter. Moreover, turbine was installed in the exhaust passage to generate the power that would be utilized to run the electrical accessories of the engine. SOLIDWORKS were used for 3D CAD modeling and the flow analysis of turbine with radial inlet-axial outlet. In addition, ANSYS was used for stress-strain analysis.

Suggested Citation

  • Roman Kalvin & Juntakan Taweekun & Kittinan Maliwan & Hafiz Muhammad Ali, 2021. "Fabrication of Catalytic Converter with Different Materials and Comparison with Existing Materials in Addition to Analysis of Turbine Installed at the Exhaust of 4 Stroke SI Engine," Sustainability, MDPI, vol. 13(18), pages 1-12, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10470-:d:639706
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:zib:zjmerd:2jmerd2018-59-64 is not listed on IDEAS
    2. Deligant, M. & Podevin, P. & Descombes, G., 2012. "Experimental identification of turbocharger mechanical friction losses," Energy, Elsevier, vol. 39(1), pages 388-394.
    3. Ali Salh Sawadi & Mohammed Mohsin Shkhair & Riyad Jassim Tilefih, 2018. "Optimize And Analysis Compressor Wheel Of Turbo Charger," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(2), pages 59-64, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Wei & Liu, Feifan & Yu, Cheng & Chen, Yongping & Liu, Xiangdong, 2023. "Microfluidic method–based encapsulated phase change materials: Fundamentals, progress, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, José Ramón & Olmeda, Pablo & Tiseira, Andrés & García-Cuevas, Luis Miguel & Lefebvre, Alain, 2013. "Theoretical and experimental study of mechanical losses in automotive turbochargers," Energy, Elsevier, vol. 55(C), pages 888-898.
    2. Damian HADRYŚ & Henryk BĄKOWSKI & Zbigniew STANIK & Andrzej KUBIK, 2019. "Analysis Of Shaft Wear In Turbocharges Of Automotive Vehicles," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(3), pages 85-96, September.
    3. Salameh, Georges & Chesse, Pascal & Chalet, David, 2019. "Mass flow extrapolation model for automotive turbine and confrontation to experiments," Energy, Elsevier, vol. 167(C), pages 325-336.
    4. Novotný, Pavel & Vacula, Jiří & Hrabovský, Jozef, 2021. "Solution strategy for increasing the efficiency of turbochargers by reducing energy losses in the lubrication system," Energy, Elsevier, vol. 236(C).
    5. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    6. Serrano, José Ramón & Tiseira, Andrés & García-Cuevas, Luis Miguel & Inhestern, Lukas Benjamin & Tartoussi, Hadi, 2017. "Radial turbine performance measurement under extreme off-design conditions," Energy, Elsevier, vol. 125(C), pages 72-84.
    7. Avola, Calogero & Copeland, Colin D. & Burke, Richard D. & Brace, Chris J., 2017. "Effect of inter-stage phenomena on the performance prediction of two-stage turbocharging systems," Energy, Elsevier, vol. 134(C), pages 743-756.
    8. Matteo Repetto & Massimiliano Passalacqua & Luis Vaccaro & Mario Marchesoni & Alessandro Pini Prato, 2020. "Turbocompound Power Unit Modelling for a Supercapacitor-Based Series Hybrid Vehicle Application," Energies, MDPI, vol. 13(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10470-:d:639706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.