IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i18p10343-d636692.html
   My bibliography  Save this article

Impact of Ventilation Strategy on the Transmission of Outdoor Pollutants into Indoor Environment Using CFD

Author

Listed:
  • Murtaza Mohammadi

    (Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK)

  • John Calautit

    (Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK)

Abstract

The transition to remote working due to the pandemic has accentuated the importance of clean indoor air, as people spend a significant portion of their time indoors. Amongst the various determinants of indoor air quality, outdoor pollution is a significant source. While conventional studies have certainly helped to quantify the long-term personal exposure to pollutants and assess their health impact, they have not paid special attention to the mechanism of transmission of pollutants between the two environments. Nevertheless, the quantification of infiltration is essential to determine the contribution of ambient pollutants in indoor air quality and its determinants. This study evaluates the transmission of outdoor pollutants into the indoor environment using 3D computational fluid dynamics modelling with a pollution dispersion model. Naturally ventilated buildings next to an urban canyon were modelled and simulated using Ansys Fluent and validated against wind tunnel results from the Concentration Data of Street Canyons database. The model consisted of two buildings of three storeys each, located on either side of a road. Two line-source pollutants were placed in the street, representing traffic emissions. Three internal rooms were selected and modelled on each floor and implemented with various ventilation strategies. Results indicate that for a canyon with an aspect ratio of 1, indoor spaces in upstream buildings are usually less polluted than downstream ones. Although within the canyon, pollution is 2–3 times higher near the upstream building. Cross ventilation can minimise or prevent infiltration of road-side pollutants into indoor spaces, while also assisting in the dispersion of ambient pollutants. The critical configuration, in terms of air quality, is single-sided ventilation from the canyon. This significantly increases indoor pollutant concentration regardless of the building location. The study reveals that multiple factors determine the indoor–outdoor links, and thorough indexing and understanding of the processes can help designers and urban planners in regulating urban configuration and geometries for improved indoor air quality. Future works should look at investigating the influence of indoor emissions and the effects of different seasons.

Suggested Citation

  • Murtaza Mohammadi & John Calautit, 2021. "Impact of Ventilation Strategy on the Transmission of Outdoor Pollutants into Indoor Environment Using CFD," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10343-:d:636692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/18/10343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/18/10343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tien, Paige Wenbin & Wei, Shuangyu & Liu, Tianshu & Calautit, John & Darkwa, Jo & Wood, Christopher, 2021. "A deep learning approach towards the detection and recognition of opening of windows for effective management of building ventilation heat losses and reducing space heating demand," Renewable Energy, Elsevier, vol. 177(C), pages 603-625.
    2. Eric S. Coker & Laura Cavalli & Enrico Fabrizi & Gianni Guastella & Enrico Lippo & Maria Laura Parisi & Nicola Pontarollo & Massimiliano Rizzati & Alessandro Varacca & Sergio Vergalli, 2020. "The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 611-634, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yucheng He & Sanika Ravindra Nishandar & Rufus David Edwards & Marko Princevac, 2023. "Air Quality Modeling of Cooking Stove Emissions and Exposure Assessment in Rural Areas," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    2. Antiopi-Malvina Stamatellou & Olympia Zogou & Anastassios Stamatelos, 2023. "Energy Cost Assessment and Optimization of Post-COVID-19 Building Ventilation Strategies," Sustainability, MDPI, vol. 15(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Kaiser Calautit & Hassam Nasarullah Chaudhry, 2022. "Sustainable Buildings: Heating, Ventilation, and Air-Conditioning," Energies, MDPI, vol. 15(21), pages 1-5, November.
    2. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2021. "Environment, public debt and epidemics," AMSE Working Papers 2128, Aix-Marseille School of Economics, France.
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Borsati, Mattia & Nocera, Silvio & Percoco, Marco, 2022. "Questioning the spatial association between the initial spread of COVID-19 and transit usage in Italy," Research in Transportation Economics, Elsevier, vol. 95(C).
    5. Abdullah Addas & Ahmad Maghrabi, 2021. "The Impact of COVID-19 Lockdowns on Air Quality—A Global Review," Sustainability, MDPI, vol. 13(18), pages 1-31, September.
    6. Feng Wang & Xing Ge & Danwen Huang, 2022. "Government Intervention, Human Mobility, and COVID-19: A Causal Pathway Analysis from 121 Countries," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    7. Luca Di Gialleonardo & Mauro Marè & Antonello Motroni & Francesco Porcelli, 2020. "Family Ties and the Pandemic: Some Evidence from Sars-CoV-2," Working papers 100, Società Italiana di Economia Pubblica.
    8. Marion Davin & Mouez Fodha & Thomas Seegmuller, 2023. "Environment, public debt, and epidemics," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(6), pages 1270-1303, December.
    9. Marco Quatrosi, 2020. "Analysis of monthly CO2 emission trends for major EU Countries: a time series approach," SEEDS Working Papers 1520, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2020.
    10. Becchetti, Leonardo & Beccari, Gabriele & Conzo, Gianluigi & Conzo, Pierluigi & De Santis, Davide & Salustri, Francesco, 2022. "Particulate matter and COVID-19 excess deaths: Decomposing long-term exposure and short-term effects," Ecological Economics, Elsevier, vol. 194(C).
    11. Cappelli, Federica & Guastella, Gianni & Pareglio, Stefano, 2021. "Urban Sprawl and Air Quality in European Cities: an Empirical Assessment," FEEM Working Papers 309920, Fondazione Eni Enrico Mattei (FEEM).
    12. Marcos Díaz Ramírez & Paolo Veneri & Alexander C. Lembcke, 2022. "Where did it hit harder? Understanding the geography of excess mortality during the COVID‐19 pandemic," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 889-908, June.
    13. Berta, P. & Bratti, M. & Fiorio, C.V. & Pisoni, E. & Verzillo, S., 2021. "Administrative border effects in Covid-19 related mortality," Health, Econometrics and Data Group (HEDG) Working Papers 21/21, HEDG, c/o Department of Economics, University of York.
    14. Nishant Gupta & Virendra Kumar Yadav & Amel Gacem & M. Al-Dossari & Krishna Kumar Yadav & N. S. Abd El-Gawaad & Nidhal Ben Khedher & Nisha Choudhary & Pankaj Kumar & Simona Cavalu, 2022. "Deleterious Effect of Air Pollution on Human Microbial Community and Bacterial Flora: A Short Review," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    15. Pérez-Martínez, P.J. & Dunck, J.A. & de Assunção, J.V. & Connerton, P. & Slovic, A.D. & Ribeiro, H. & Miranda, R.M., 2022. "Long-term commuting times and air quality relationship to COVID-19 in São Paulo," Journal of Transport Geography, Elsevier, vol. 101(C).
    16. Jeffrey D Sachs & Salim Abdool Karim & Lara Aknin & Joseph Allen & Kirsten Brosbol & Gabriela Cuevas Barron & Peter Daszak & María Fernanda Espinosa & Vitor Gaspar & Alejandro Gaviria & Andy Haines, 2020. "Lancet COVID-19 Commission Statement on the occasion of the 75th session of the UN General Assembly," DEOS Working Papers 2032, Athens University of Economics and Business.
    17. Sanaullah Panezai & Ubaid Ali & Alam Zeb & Muhammad Rafiq & Ayat Ullah & Shahab E. Saqib, 2021. "Quantifying the Health and Wealth Benefits of Reducing Point Source Pollution: The Case of the Sugar Industry in Pakistan," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    18. Murtaza Mohammadi & John Calautit, 2022. "Quantifying the Transmission of Outdoor Pollutants into the Indoor Environment and Vice Versa—Review of Influencing Factors, Methods, Challenges and Future Direction," Sustainability, MDPI, vol. 14(17), pages 1-27, August.
    19. Liu, Ziheng & Chen, Xi & Lu, Qinan, 2023. "Blowin' in the Wind of an Invisible Killer: Long-Term Exposure to Ozone and Respiratory Mortality in the United States," IZA Discussion Papers 15981, Institute of Labor Economics (IZA).
    20. Brandon Michael Taylor & Michael Ash & Lawrence Peter King, 2022. "Initially High Correlation between Air Pollution and COVID-19 Mortality Declined to Zero as the Pandemic Progressed: There Is No Evidence for a Causal Link between Air Pollution and COVID-19 Vulnerabi," IJERPH, MDPI, vol. 19(16), pages 1-9, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:18:p:10343-:d:636692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.