IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9701-d624892.html
   My bibliography  Save this article

Effectiveness of Chinese Regulatory Planning in Mitigating and Adapting to Climate Change: Comparative Analysis Based on Q Methodology

Author

Listed:
  • Chengzhi Yin

    (School of Public Policy & Management, Tsinghua University, Beijing 100084, China)

  • Jianhua Xiao

    (School of Public Policy & Management, Tsinghua University, Beijing 100084, China)

  • Tianqi Zhang

    (School of Public Policy & Management, Tsinghua University, Beijing 100084, China)

Abstract

With cities considered the main source of carbon emissions, urban planning could mitigate and help adapt to climate change, given the allocation and regulation of public policies of urban spatial resources. China’s regulatory planning remains the basis for building permission in the original urban and rural planning, and the new territorial spatial planning systems, determining the quality of urban plan implementation. Comprehensive regulatory plans effectively reduce carbon emissions. This study employs Q methodology to compare and analyze urban planners’ and practitioners’ perceptions of China’s regulatory planning in climate change mitigation and adaptation. The findings show that while regulatory planning is key, potential deficiencies include the gaps between regulatory from master plans, capacity shortages of designations and indicators, and unequal rights and responsibilities of local governments. However, mandatory indicators in regulatory planning, especially “greening rate,” “building density,” “land use type,” and “application of renewable energy technologies to the development of municipal infrastructure” could effectively mitigate climate change. “Greening rate” is the core indicator in regulatory planning since it provides empirical evidence for the “green space effect”. This study indicates that local customization of combined regulation of greening rate and green spaces could help mitigate and help China adapt to climate change.

Suggested Citation

  • Chengzhi Yin & Jianhua Xiao & Tianqi Zhang, 2021. "Effectiveness of Chinese Regulatory Planning in Mitigating and Adapting to Climate Change: Comparative Analysis Based on Q Methodology," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9701-:d:624892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9701/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9701/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dong, Kangyin & Dong, Xiucheng & Ren, Xiaohang, 2020. "Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China," Energy Economics, Elsevier, vol. 90(C).
    2. Hurlimann, Anna & Moosavi, Sareh & Browne, Geoffrey R., 2021. "Urban planning policy must do more to integrate climate change adaptation and mitigation actions," Land Use Policy, Elsevier, vol. 101(C).
    3. Eugenia Kalnay & Ming Cai, 2003. "Impact of urbanization and land-use change on climate," Nature, Nature, vol. 423(6939), pages 528-531, May.
    4. Lopez-Behar, Diana & Tran, Martino & Froese, Thomas & Mayaud, Jerome R. & Herrera, Omar E. & Merida, Walter, 2019. "Charging infrastructure for electric vehicles in Multi-Unit Residential Buildings: Mapping feedbacks and policy recommendations," Energy Policy, Elsevier, vol. 126(C), pages 444-451.
    5. Xiaowei Chuai & Jiqun Wen & Dachang Zhuang & Xiaomin Guo & Ye Yuan & Yue Lu & Mei Zhang & Jiasheng Li, 2019. "Intersection of Physical and Anthropogenic Effects on Land-Use/Land-Cover Changes in Coastal China of Jiangsu Province," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    6. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    7. Yosef Jabareen, 2014. "An Assessment Framework for Cities Coping with Climate Change: The Case of New York City and its PlaNYC 2030," Sustainability, MDPI, vol. 6(9), pages 1-22, September.
    8. Barbosa, Roseli Azambuja & Domingues, Carla Heloisa de Faria & Silva, Marcelo Corrêa da & Foguesatto, Cristian Rogério & Pereira, Mariana de Aragão & Gimenes, Régio Marcio Toesca & Borges, João August, 2020. "Using Q-methodology to identify rural women’s viewpoint on succession of family farms," Land Use Policy, Elsevier, vol. 92(C).
    9. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    10. Wu, Zhen & Chen, Ruishan & Meadows, Michael E. & Sengupta, Dhritiraj & Xu, Di, 2019. "Changing urban green spaces in Shanghai: trends, drivers and policy implications," Land Use Policy, Elsevier, vol. 87(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maulana Mukhlis & Ryzal Perdana, 2022. "A Critical Analysis of the Challenges of Collaborative Governance in Climate Change Adaptation Policies in Bandar Lampung City, Indonesia," Sustainability, MDPI, vol. 14(7), pages 1-12, March.
    2. Limei Song & Feng Xu & Ming Sheng & Baohua Wen, 2023. "The Relationship between Rural Spatial Form and Carbon Emission—A Case Study of Suburban Integrated Villages in Hunan Province, China," Land, MDPI, vol. 12(8), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    2. Di Zhang & Zhanqi Wang & Shicheng Li & Hongwei Zhang, 2021. "Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    3. Xiaoqing Lin & Chunyan Lu & Kaishan Song & Ying Su & Yifan Lei & Lianxiu Zhong & Yibin Gao, 2020. "Analysis of Coupling Coordination Variance between Urbanization Quality and Eco-Environment Pressure: A Case Study of the West Taiwan Strait Urban Agglomeration, China," Sustainability, MDPI, vol. 12(7), pages 1-19, March.
    4. Lukáš Dvořáček & Martin Horák & Jaroslav Knápek, 2022. "Simulation of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Using Recuperated Braking Energy from Trains," Energies, MDPI, vol. 15(2), pages 1-28, January.
    5. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    6. Eleni Sardianou & Vasilis Nikou & Ioannis Kostakis, 2023. "Harmonizing Sustainability Goals: Empirical Insights into Climate Change Mitigation and Circular Economy Strategies in Selected European Countries with SDG13 Framework," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    7. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    8. Gurbanov, Sarvar, 2021. "Role of Natural Gas Consumption in the Reduction of CO₂ Emissions: Case of Azerbaijan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 14(22).
    9. Yaoyao Zhu & Gabriel Hoh Teck Ling, 2022. "A Systematic Review of Morphological Transformation of Urban Open Spaces: Drivers, Trends, and Methods," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    10. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    11. Anne A. Gharaibeh & Esra’a M. Al.Zu’bi & Lama B. Abuhassan, 2019. "Amman ( City of Waters ); Policy, Land Use, and Character Changes," Land, MDPI, vol. 8(12), pages 1-25, December.
    12. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    13. Isaac Sarfo & Bi Shuoben & Li Beibei & Solomon Obiri Yeboah Amankwah & Emmanuel Yeboah & John Ernest Koku & Edward Kweku Nunoo & Clement Kwang, 2022. "Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9851-9883, August.
    14. Lee, Chien-Chiang & Wang, Fuhao & Chang, Yu-Fang, 2023. "Towards net-zero emissions: Can green bond policy promote green innovation and green space?," Energy Economics, Elsevier, vol. 121(C).
    15. Liang Xie & Xianzhong Mu & Kuanyuting Lu & Dongou Hu & Guangwen Hu, 2023. "The time-varying relationship between CO2 emissions, heterogeneous energy consumption, and economic growth in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7769-7793, August.
    16. Hua Xia & Shidong Ge & Xinyu Zhang & Gunwoo Kim & Yakai Lei & Yang Liu, 2021. "Spatiotemporal Dynamics of Green Infrastructure in an Agricultural Peri-Urban Area: A Case Study of Baisha District in Zhengzhou, China," Land, MDPI, vol. 10(8), pages 1-21, July.
    17. Yulong Shu & Kai Lin & Yafang Yu, 2024. "Study on Urban Land Simulation under the Perspective of Local Climate Zoning—A Case Study of Guiyang City," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    18. Zhen Yang & Weijun Gao, 2022. "Evaluating the Coordinated Development between Urban Greening and Economic Growth in Chinese Cities during 2005 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    19. Tian, Guangjin & Jiang, Jing & Yang, Zhifeng & Zhang, Yaoqi, 2011. "The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China," Ecological Modelling, Elsevier, vol. 222(3), pages 865-878.
    20. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9701-:d:624892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.