IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9525-d620923.html
   My bibliography  Save this article

Simulation and Analysis of Land Use Changes Applying Cellular Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador

Author

Listed:
  • René Ulloa-Espíndola

    (ETSI Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria sn, 28040 Madrid, Spain)

  • Susana Martín-Fernández

    (ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria sn, 28040 Madrid, Spain)

Abstract

Rapid urban growth has historically led to changes in land use patterns and the degradation of natural resources and the urban environment. Uncontrolled growth of urban areas in the city of Quito has continued to the present day since 1960s, aggravated by illegal or irregular new settlements. The main objective of this paper is to generate spatial predictions of these types of urban settlements and land use changes in 2023, 2028 and 2038, applying the Dinamica EGO cellular automata and multivariable software. The study area was the Machachi Valley between the south of the city of Quito and the rural localities of Alóag and Machachi. The results demonstrate the accuracy of the model and its applicability, thanks to the use of 15 social, physical and climate predictors and the validation process. The analysis of the land use changes throughout the study area shows that urban land use will undergo the greatest net increase. Growth in the south of Quito is predicted to increase by as much as 35% between 2018 and 2038 where new highly vulnerable urban settlements can appear. Native forests in the Andes and forest plantations are expected to decline in the study area due to their substitution by shrub vegetation or agriculture and livestock land use. The implementation of policies to control the land market and protect natural areas could help to mitigate the continuous deterioration of urban and forest areas.

Suggested Citation

  • René Ulloa-Espíndola & Susana Martín-Fernández, 2021. "Simulation and Analysis of Land Use Changes Applying Cellular Automata in the South of Quito and the Machachi Valley, Province of Pichincha, Ecuador," Sustainability, MDPI, vol. 13(17), pages 1-25, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9525-:d:620923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stuart L. Pimm & Peter Raven, 2000. "Extinction by numbers," Nature, Nature, vol. 403(6772), pages 843-845, February.
    2. Schulp, Catharina J.E. & Levers, Christian & Kuemmerle, Tobias & Tieskens, Koen F. & Verburg, Peter H., 2019. "Mapping and modelling past and future land use change in Europe’s cultural landscapes," Land Use Policy, Elsevier, vol. 80(C), pages 332-344.
    3. Douglas L. Weed, 2005. "Weight of Evidence: A Review of Concept and Methods," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1545-1557, December.
    4. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    5. Helen Couclelis, 2005. "“Where has the Future Gone?†Rethinking the Role of Integrated Land-Use Models in Spatial Planning," Environment and Planning A, , vol. 37(8), pages 1353-1371, August.
    6. Xiao-Peng Song & Matthew C. Hansen & Stephen V. Stehman & Peter V. Potapov & Alexandra Tyukavina & Eric F. Vermote & John R. Townshend, 2018. "Global land change from 1982 to 2016," Nature, Nature, vol. 560(7720), pages 639-643, August.
    7. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingyue Li & Zhixin Qi & Shi Xian & Dong Yao, 2021. "Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective," Land, MDPI, vol. 10(3), pages 1-18, March.
    2. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Qiu, Bingwen & Li, Haiwen & Tang, Zhenghong & Chen, Chongcheng & Berry, Joe, 2020. "How cropland losses shaped by unbalanced urbanization process?," Land Use Policy, Elsevier, vol. 96(C).
    4. Christopher Jeffords, 2014. "Preference-directed regulation when ethical environmental policy choices are formed with limited information," Empirical Economics, Springer, vol. 46(2), pages 573-606, March.
    5. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    6. te Brömmelstroet, Marco, 2017. "Towards a pragmatic research agenda for the PSS domain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 77-83.
    7. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    8. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    9. Wei Fan & Xiankun Yang & Shirong Cai & Haidong Ou & Tao Zhou & Dakang Wang, 2024. "Land-Use/Cover Change and Driving Forces in the Pan-Pearl River Basin during the Period 1985–2020," Land, MDPI, vol. 13(6), pages 1-26, June.
    10. Stan Geertman & John Stillwell, 2020. "Planning support science: Developments and challenges," Environment and Planning B, , vol. 47(8), pages 1326-1342, October.
    11. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    12. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    13. Liu, HuiYu & Lin, JiaJia & Zhang, Mingyang & Lin, ZhenShan & Wen, Ten, 2008. "Extinction of poorest competitors and temporal heterogeneity of habitat destruction," Ecological Modelling, Elsevier, vol. 219(1), pages 30-38.
    14. Jing Duan & Pu Shi & Yuanyuan Yang & Dongyan Wang, 2024. "Spatiotemporal Change Analysis and Multi-Scenario Modeling of Ecosystem Service Values: A Case Study of the Beijing-Tianjin-Hebei Urban Agglomeration, China," Land, MDPI, vol. 13(11), pages 1-21, October.
    15. Florian Kotthoff & Thomas Hamacher, 2022. "Calibrating Agent-Based Models of Innovation Diffusion with Gradients," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(3), pages 1-4.
    16. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    17. Tatiana Montenegro-Romero & Cristián Vergara-Fernández & Fabian Argandoña-Castro & Fernando Peña-Cortés, 2022. "Agriculture and Temperate Fruit Crop Dynamics in South-Central Chile: Challenges for Fruit Crop Production in La Araucanía Region, Chile," Land, MDPI, vol. 11(6), pages 1-12, May.
    18. Liao, Limei & Shen, Yang & Liao, Jinbao, 2020. "Robustness of dispersal network structure to patch loss," Ecological Modelling, Elsevier, vol. 424(C).
    19. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    20. Yu, Zhaowu & Chen, Tingting & Yang, Gaoyuan & Sun, Ranhao & Xie, Wei & Vejre, Henrik, 2020. "Quantifying seasonal and diurnal contributions of urban landscapes to heat energy dynamics," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9525-:d:620923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.