IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2021-144-3.html
   My bibliography  Save this article

Calibrating Agent-Based Models of Innovation Diffusion with Gradients

Author

Abstract

Consumer behavior and the decision to adopt an innovation are governed by various motives, which models find difficult to represent. A promising way to introduce the required complexity into modeling approaches is to simulate all consumers individually within an agent-based model (ABM). However, ABMs are complex and introduce new challenges. Especially the calibration of empirical ABMs was identified as a key difficulty in many works. In this work, a general ABM for simulating the Diffusion of Innovations is described. The ABM is differentiable and can employ gradient-based calibration methods, enabling the simultaneous calibration of large numbers of free parameters in large-scale models. The ABM and calibration method are tested by fitting a simulation with 25 free parameters to the large data set of privately owned photovoltaic systems in Germany, where the model achieves a coefficient of determination of R 2 ≃ 0.7.

Suggested Citation

  • Florian Kotthoff & Thomas Hamacher, 2022. "Calibrating Agent-Based Models of Innovation Diffusion with Gradients," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(3), pages 1-4.
  • Handle: RePEc:jas:jasssj:2021-144-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/25/3/4/4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    3. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Barde, Sylvain, 2020. "Macroeconomic simulation comparison with a multivariate extension of the Markov information criterion," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    3. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    4. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    5. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Karl Naumann-Woleske & Max Sina Knicker & Michael Benzaquen & Jean-Philippe Bouchaud, 2022. "Exploration of the Parameter Space in Macroeconomic Models," Post-Print hal-03797418, HAL.
    7. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    8. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    9. Torsten Heinrich & Juan Sabuco & J. Doyne Farmer, 2022. "A simulation of the insurance industry: the problem of risk model homogeneity," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 535-576, April.
    10. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    11. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    12. Anders Dugstad & Kristine Grimsrud & Gorm Kipperberg & Henrik Lindhjem & Ståle Navrud, 2020. "Scope elasticity and economic significance in discrete choice experiments," Discussion Papers 942, Statistics Norway, Research Department.
    13. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    14. G. Rigatos, 2021. "Statistical Validation of Multi-Agent Financial Models Using the H-Infinity Kalman Filter," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 777-798, October.
    15. Ezzine-de-Blas, Driss & Corbera, Esteve & Lapeyre, Renaud, 2019. "Payments for Environmental Services and Motivation Crowding: Towards a Conceptual Framework," Ecological Economics, Elsevier, vol. 156(C), pages 434-443.
    16. Karl Naumann-Woleske & Max Sina Knicker & Michael Benzaquen & Jean-Philippe Bouchaud, 2021. "Exploration of the Parameter Space in Macroeconomic Agent-Based Models," Papers 2111.08654, arXiv.org, revised Aug 2022.
    17. Platt, Donovan & Gebbie, Tim, 2018. "Can agent-based models probe market microstructure?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1092-1106.
    18. Gabriel Lopez Porras & Lindsay C. Stringer & Claire H. Quinn, 2018. "Unravelling Stakeholder Perceptions to Enable Adaptive Water Governance in Dryland Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3285-3301, August.
    19. Chaitanya Kaligotla & Jonathan Ozik & Nicholson Collier & Charles M. Macal & Kelly Boyd & Jennifer Makelarski & Elbert S. Huang & Stacy T. Lindau, 2020. "Model Exploration of an Information-Based Healthcare Intervention Using Parallelization and Active Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(4), pages 1-1.
    20. Johannes Bettin & Meike Wollni, 2020. "Environmental Concern and Urbanization in India: Towards Psychological Complexity," Sustainability, MDPI, vol. 12(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2021-144-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.